Highland Jr High Boiler Replacement Project
Ogden School District
1950 Monroe Blvd
Ogden UT, 84401

RFP 22-010

Project Date: May 30th- September 2nd 2022
Bid Due: April 12th, 2022 2:00PM

Project:

Highland Jr High School
325 Gramercy
Ogden UT, 84404
TA B L E of C O N T E N T S

NOTICE TO BIDDERS
BID FORM
BID BOND
STANDARD CONTRACT TERMS AND CONDITIONS

S P E C I F I C A T I O N S

D I V I S I O N 0 1: GENERAL REQUIREMENTS

01 1000 SUMMARY
 01 1100 SUMMARY OF WORK

01 2000 PRICE AND PAYMENT PROCEDURES
 01 2300 ALTERNATES
 01 2500 SUBSTITION PROCEDURES

01 3000 ADMINISTRATIVE REQUIREMENTS
 01 3100 PROJECT MANAGEMENT AND COORDINATION
 01 3200 CONSTRUCTION PROGRESS DOCUMENTATION
 01 3300 SUBMITTAL PROCEDURES

01 4000 QUALITY REQUIREMENTS
 01 4000 QUALITY REQUIREMENTS
 01 4200 REFERENCES

01 5000 TEMPORARY FACILITIES AND CONTROLS
 01 5000 TEMPORARY FACILITIES AND CONTROLS

01 6000 PRODUCT REQUIREMENTS
 01 6000 PRODUCT REQUIREMENTS

01 7000 EXECUTION AND CLOSEOUT REQUIREMENTS
 01 7300 EXECUTION
 01 7700 CLOSEOUT PROCEDURES
 01 7823 OPERATION AND MAINTENANCE DATA
 01 7839 PROJECT RECORD DOCUMENT
 01 7900 DEMONSTRATION AND TRAINING

DIVISION 22: PLUMBING

22 0000 PLUMBING
 22 0500 COMMON WORK RESULTS FOR PLUMBING
 22 0553 IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT
 22 0719 PLUMBING PIPING INSULATION

22 1000 PLUMBING PIPES AND PUMPS
DIVISION 23: HEATING, VENTILATING, AND AIR-CONDITIONING

23 0000 HEATING, VENTILATING, AND AIR-CONDITIONING

23 0500 COMMON WORK RESULTS FOR HVAC
23 0519 METERS AND GAGES FOR HVAC PIPING
23 0523.13 BUTTERFLY VALVES FOR HVAC PIPING
23 0523.15 GATE VALVES FOR HVAC PIPING
23 0529 HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT
23 0548 VIBRATION SEISMIC CONTROL FOR HVAC PIPING AND EQUIPMENT
23 0553 IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT
23 0594 TESTING, ADJUSTING AND BALANCING FOR HVAC
23 0719 HVAC PIPING INSULATION
23 0900 DIRECT DIGITAL CONTROL SYSTEM FOR HVAC
23 0993 SEQUENC OF OPERATIONS FOR HVAC DDC

23 1000 FACILITY FUEL SYSTEMS

23 1123 FACILITY NATURAL GAS PIPING

23 2000 HYDRONIC PIPING

23 2113 HYDRONIC PIPING
23 2116 HYDRONIC PIPING SPECILATIES
23 2513 WATER TREATMENT FOR CLOSED-LOOP HYDRONIC SYSTEMS

23 5000 CENTRAL HEATING EQUIPMENT

23 5216 CONDENSING BOILERS

DIVISION 26: ELECTRICAL

26 0500 COMMON WORK RESULTS FOR ELECTRICAL

26 0001 ELECTRICAL GENERAL PROVISIONS
26 0070 ELECTRICAL CONNECTIONS FOR EQUIPMENT
26 0072 ELECTRICAL SUPPORTS AND SEISMIC RESTRAINTS
26 0080 ELECTRICAL DEMOLITION
26 0110 CONDUIT RACEWAYS
26 0120 CONDUCTORS AND CABLES
26 0135 ELECTRICAL BOXES AND FITTINGS
26 0140 WIRING DEVICES
26 0156 VARIABLE FREQUENCY DRIVES
26 0170 DISCONNECT SWITCHES
26 0180 OVERCURRENT PROTECTIVE DEVICES
26 0452 GROUNDING
END OF TABLE OF CONTENTS
NOTICE TO BIDDERS

Electronic bids will be received by the Board of Education of the Ogden School District, for the Highland Boiler Replacement Project. Bids will be in accordance with these specifications. **This project is federally funded, and Prevailing Wages (Davis Bacon) shall apply.**

A Pre-bid walk through will be held Friday April 1st at 325 Gramercy Ave, Ogden Utah at 1:00pm. Attendance at the bid walk is **mandatory** to qualify contractors to bid this project.

The Office of the Director of Support Services will receive electronic bids until the hour of 2:00pm April 12th 2022. **Bids must be submitted on Sciquest.com.**

A bid bond of the amount of (5%) of the bid, made payable to the Board of Education of the Ogden School District, shall accompany bid. If a certified check is used in lieu of the bid bond, a certificate from an approved surety company guaranteeing execution of 100% Performance Bond and 100% Payment Bond must accompany bid.

The Ogden School District Board of Education reserves the right to accept or reject any or all bids or to waive any informality or technicality in any bid in the interest if the District.

If bidders have questions or need to seek clarification during this bidding process, then questions must be received in writing through Sciquest.com by no later than April 11th at 12:00pm.

BOARD OF EDUCATION OF THE OGDEN SCHOOL DISTRICT
KEN CRAWFORD, DIRECTOR OF SUPPORT SERVICES
BID FORM RFP 22-010

Name of Bidder________________________________ Date________________

Address of Bidder___

To the Board of Education of the Ogden City School District

1950 Monroe Blvd

Ogden, UT 84401

RFP22-010 Project Dates: May 30th- September 2nd 2022

The undersigned, in compliance with your invitation for bids for the Highland Jr High Boiler Replacement Project having examined the drawings, specifications and related documents, and the site of the proposed work and being familiar with all of the conditions surrounding the construction of the proposed project, including the availability of labor, do hereby propose to furnish all labor, materials and supplies as required for the work in accordance with the Contract Documents as specified and within the time set forth and at the price stated below.

I/We acknowledge receipt of the following addenda if applicable

#1__________________ Date______________

#2__________________ Date______________

Base Bid Project: This base bid shall include all work in the construction documents for RFP 22-010 Highland Jr High Boiler Replacement Project. I/We agree to perform this work for the sum of:

_______________________________________ Dollars ($_________________)

(In case of discrepancy, written amount shall govern)

Bid Alternate Project: This alternate bid shall include all work in the Bid Alternate portion in the construction documents for RFP 22-010 Highland Jr High Boiler Replacement Project.

_______________________________________ Dollars ($_________________)

(In case of discrepancy, written amount shall govern)
BID BOND

I/We guarantee to complete the work as defined in the Drawings and specifications.

Enclosed is ____________ for bid security as required in the sum $__________________

The undersigned Contractors license number for Utah is____________________ and my bid limit is $__________________________

Upon receipt of Notice of Acceptance of this bid, the undersigned agrees to execute the Contract and within five (5) days deliver Owners Protective Bonds in the prescribed form in the amount of 100% of the General Construction Contract Price for faithful performance of the contract. The Certified Check, Cashier’s Check or Bid Bond attached, in the amount not less than five percent (5%) of the Body shall become the property of the Board of Education of the Ogden City School District in the event that the Contract is not negotiated and/or the Owner’s Protective Bonds delivered within the time set forth, as liquidated damages for the delay and additional expense caused thereby.

Respectfully Submitted,

Name of Bidder __

Authorized Signature ___

Phone Number ___

Email Address ___
STANDARD CONTRACT TERMS AND CONDITIONS

1. AUTHORITY: Provisions of this contract are pursuant to the authority set forth in Utah Code §§ 63G - 6a Utah Procurement Code; as amended, Utah Administrative Code R33. Administrative Services, Purchasing and General Services; and/or Ogden School District’s Purchasing and Procurement Policy; and related statutes which govern DISTRICT’S purchase of goods and services.

2. CONTRACT JURISDICTION, CHOICE OF LAW, & VENUE: Provisions of this contract shall be governed by the laws of the State of Utah. The parties will submit to the jurisdiction of the courts of the State of Utah for any dispute arising out of this contract or breach thereof. Venue shall be in Ogden City, in the Judicial Court for Weber County.

3. LAWS AND REGULATIONS: CONTRACTOR and any and all supplies, services and equipment furnished under this contract will comply fully with all applicable Federal and State laws and regulations, including licensure and certification requirements.

4. RECORDS ADMINISTRATION: CONTRACTOR shall maintain, or supervise the maintenance of all records necessary to properly account for payments made to CONTRACTOR for costs authorized by this contract. These records shall be retained by CONTRACTOR for at least four years after the contract terminates, or until all audits initiated within the four years, have been completed, whichever is later. CONTRACTOR agrees to allow DISTRICT, State, and Federal auditors and DISTRICT staff, access to all records to this contract for audit, inspection, and monitoring of services. Such access will be during normal business hours, or by appointment.

5. CERTIFY REGISTRATION AND USE OF EMPLOYMENT "STATUS VERIFICATION SYSTEM" (E-Verify): The Status Verification System, also referred to as “E- Verify”, only applies to contracts issued through a Request for Proposal process, and to sole sources that are included within a Request for Proposal. It does not apply to Invitation for Bids or to the Multiple Stage Bid.

5.1 Status Verification System

1. Each offeror and each person signing on behalf of any offeror certifies as to its own entity, under penalty of perjury, that the named CONTRACTOR has registered and is participating in the Status Verification System to verify the work eligibility status of the CONTRACTOR’s new employees that are employed in the State of Utah in accordance with applicable immigration laws including UCA § 63G-12-302.

2. CONTRACTOR shall require that the following provision be placed in each subcontract at every tier: “The subcontractor shall certify to the main (prime or general) contractor by affidavit that the subcontractor has verified through the Status Verification System the employment status of each new employee of the respective subcontractor, all in accordance with applicable immigration laws including UCA § 63G -12- 302 and to comply with all applicable employee status verification laws. Such affidavit must be provided prior to the notice to proceed for the subcontractor to perform the work.”
3. DISTRICT will not consider a proposal for award, nor make any award where there has not been compliance with this section.

4. Manually or electronically signing the Proposal is deemed CONTRACTOR’S certification of compliance with all provisions of this employment status verification certification required by all applicable status verification laws including UCA § 63G-12-302.

5.2 Indemnity Clause for Status Verification System

1. CONTRACTOR (includes, but is not limited to any Contractor, Design Professional, Designer or Consultant) shall protect, indemnify and hold harmless, DISTRICT and its officers, employees, agents, representatives and anyone the DISTRICT may be liable to, against any claim, damages or liability arising out of or resulting from violations of Section 5 of this Contract whether violated by employees, agents, or contractors of the following: (a) CONTRACTOR; (b) Subcontractor at any tier; and/or (c) any entity or person for whom the CONTRACTOR or Subcontractor may be liable.

2. Notwithstanding Section 5.2.1. above, Design Professionals or Designers under direct contract with DISTRICT shall only be required to indemnify DISTRICT for a liability claim that arises out of the Design Professional's services, unless the liability claim arises from the Design Professional's negligent act, wrongful act, error or omission, or other liability imposed by law except that the Design Professional shall be required to indemnify the DISTRICT in regard to subcontractors or sub consultants at any tier that are under the direct or indirect control or responsibility of the Design Professional, and includes all independent contractors, agents, employees or anyone else for whom the Design Professional may be liable at any tier.

6. CONFLICT OF INTEREST: CONTRACTOR represents that none of its officers or employees are officers or employees of the DISTRICT, unless disclosure has been made in accordance with U.C.A. § 67-16-8.

7. CONTRACTOR, AN INDEPENDENT CONTRACTOR: CONTRACTOR shall be an independent contractor, and as such, shall have no authorization, express or implied, to bind DISTRICT to any agreements, settlements, liability or understanding whatsoever, and agrees not to perform any acts as agent for DISTRICT, except as herein expressly set forth. Compensation stated herein shall be the total amount payable to CONTRACTOR by DISTRICT. CONTRACTOR shall be responsible for the payment of all income tax and social security amounts due as a result of payments received from DISTRICT for these contract services. Persons employed by DISTRICT and acting under the direction of DISTRICT shall not be deemed to be employees or agents of CONTRACTOR.

8. INDEMNITY CLAUSE: CONTRACTOR agrees to indemnify, save harmless, and release DISTRICT, and all its officers, agents, volunteers, and employees from and against any and all loss, damages, injury, liability, suits, and proceedings arising out of the performance of this contract which are caused in whole or in part by the acts or negligence of CONTRACTOR’S officers, agents, volunteers, or employees, but not for claims arising from DISTRICT’S sole
negligence. The parties agree that if there are any Limitations of CONTRACTOR’S Liability, including a limitation of liability for anyone for whom CONTRACTOR is responsible, such Limitations of Liability will not apply to injuries to persons, including death, or to damages to property.

9. **EMPLOYMENT PRACTICES CLAUSE**: CONTRACTOR agrees to abide by the provisions of Title VI and VII of the Civil Rights Act of 1964 (42USC 2000e) which prohibits discrimination against any employee or applicant for employment or any applicant or recipient of services, on the basis of race, religion, color, or national origin; and further agrees to abide by Executive Order No. 11246, as amended, which prohibits discrimination on the basis of sex; 45 CFR 90 which prohibits discrimination on the basis of age; and Section 504 of the Rehabilitation Act of 1973, or the Americans with Disabilities Act of 1990 which prohibits discrimination on the basis of disabilities. Also, CONTRACTOR agrees to abide by Utah’s Executive Order, dated December 13, 2006, which prohibits sexual harassment in the workplace.

10. **SEPARABILITY CLAUSE**: A declaration by any court, or any other binding legal source, that any provision of this contract is illegal and void shall not affect the legality and enforceability of any other provision of this contract, unless the provisions are mutually dependent.

11. **RENegotiation or Modifications**: This contract may be amended, modified, or supplemented only by written amendment to the contract, executed by authorized parties hereto, and attached to the original signed copy of the contract. Automatic renewals will not apply to this contract.

12. **DEBARMment**: CONTRACTOR certifies that neither it nor its principals are presently nor have ever been debarred, suspended, proposed for debarment, declared ineligible, or voluntarily excluded from participation in this transaction (contract), by any governmental department or agency. If CONTRACTOR cannot certify this statement, attach a written explanation for review by the DISTRICT. CONTRACTOR must notify the District Director of Purchasing within 30 days if debarred by any governmental entity during the contract period.

13. **TERMINATION**: Unless otherwise stated in the Special Terms and Conditions, this contract may be terminated, for cause by either party, in advance of the specified termination date, upon written notice being given the other party. The party in violation will be given ten (10) working days after notification to correct and cease the violations, after which the contract may be terminated for cause. This contract may be terminated without cause, in advance of the specified expiration date, by either party, upon sixty (60) days prior written notice being given the other party. On termination of this contract, all accounts and payments will be processed according to the financial arrangements set forth herein for approved services rendered to date of termination.

14. **NON-APPROPRIATION OF FUNDS**: CONTRACTOR acknowledges that DISTRICT cannot contract for the payment of funds not yet appropriated by the Utah State Legislature, Utah State Board of Education or District Board of Education (BOARD). If the DISTRICT becomes subjected to a legislative change, revocation of statutory authority, lack of appropriated funds or
availability of funds which would render CONTRACTOR’S delivery or performance under the contract impossible, or unnecessary, this contract will be terminated, either in whole or in part. If funding to DISTRICT is reduced due to an order by the Legislature or Governor, or is required by State law, or if federal funding (when applicable) is not provided, or requires any return or “give-back” of funds required for DISTRICT to continue payments, or if the BOARD mandates any cuts or holdbacks in spending, DISTRICT may terminate this contract or proportionately reduce the services and purchases of obligations and the amount due from DISTRICT upon 30 days written notice. Where funding is controlled entirely by DISTRICT, before discontinuing funding, DISTRICT, at its discretion, will make efforts to; a) identify other goods/services that perform substantially the same functions; b) identify if any funding is available through a reallocation or reprogramming of other appropriated or non-appropriated funds, and c) make its best efforts to request and secure such funds from the appropriate entities (collectively, a “Non-Appropriation”). If a Non-Appropriation occurs, DISTRICT shall remit all amounts due to CONTRACTOR through the date of termination. DISTRICT shall not be in default under this contract for nonpayment and will not be liable for any future commitments, penalties, or liquidated damages.

15. **SALES TAX EXEMPTION**: DISTRICT’s sales and use tax exemption number is 12057251-002-STC. The tangible personal property or services being purchased are being paid from DISTRICT funds and used in the exercise of that entity’s essential functions. If the items being purchased are construction materials, they will be converted into real property by employees of DISTRICT, unless otherwise stated in the contract.

16. **WARRANTY (This paragraph is NOT applicable to architect, engineering, and construction service providers)**: CONTRACTOR agrees to warrant and assume responsibility for all products (including hardware, firmware, and/or software products) that it licenses, contracts, or sells to DISTRICT under this contract for a period of one (1) year, unless otherwise specified and mutually agreed upon elsewhere in this contract. CONTRACTOR acknowledges that all warranties granted to the buyer by the Uniform Commercial Code of the State of Utah apply to this contract. Product liability disclaimers and/or warranty disclaimers from the seller are not applicable to this contract unless otherwise specified and mutually agreed upon elsewhere in this contract. In general, CONTRACTOR warrants that: 1) the product will do what the salesperson said it would do, 2) the product will live up to all specific claims that the manufacturer makes in their advertisements, 3) the product will be suitable for the ordinary purposes for which such product is used, 4) the product will be suitable for any special purposes that DISTRICT has relied on CONTRACTOR’S skill or judgment to consider when it advised DISTRICT about the product, 5) the product has been properly designed and manufactured, and 6) the product is free of significant defects or unusual problems about which DISTRICT has not been warned. Remedies available to DISTRICT include the following: CONTRACTOR will repair or replace (at no charge to DISTRICT) the product whose nonconformance is discovered and made known to CONTRACTOR in writing. If the repair and/or replaced product prove to be inadequate, or fails of its essential purpose, CONTRACTOR will refund the full amount of any payments that have been made. Nothing in this warranty will be construed to limit any rights or remedies DISTRICT may otherwise have under this contract.
17. **INSURANCE**: CONTRACTOR must carry insurance with policy limits no less than $1,000,000 per incident and $3,000,000 in aggregate. CONTRACTOR must provide proof of insurance to DISTRICT and must add DISTRICT as an additional insured with notice of cancellation.

18. **PUBLIC INFORMATION**: CONTRACTOR agrees that the contract and related Sales Orders and Invoices will be public documents, and may be available for distribution. CONTRACTOR gives DISTRICT express permission to make copies of the contract, related Sales Orders and Invoices in accordance with the State of Utah Government Records Access and Management Act (GRAMA). Except as for sections identified in writing and expressly approved by DISTRICT ’S Purchasing department, CONTRACTOR also agrees that CONTRACTOR’s response to the solicitation will be a public document, and copies may be given to the public under GRAMA laws. Permission to make copies as noted will take precedence over any statements of confidentiality, proprietary information, copyright information, or similar notation.

19. **DELIVERY**: Unless otherwise specified in this contract, all deliveries will be F.O.B. destination with all transportation and handling charges paid by CONTRACTOR. Responsibility and liability for loss or damage will remain with CONTRACTOR until final inspection and acceptance when responsibility will pass to DISTRICT except as to latent defects, fraud and CONTRACTOR’s warranty obligations.

20. **ORDERING AND INVOICING**: All orders will be shipped promptly in accordance with the delivery schedule. CONTRACTOR will promptly submit invoices (within 30 days of shipment or delivery of services) to DISTRICT. DISTRICT contract number and/or release number shall be listed on all invoices, freight tickets, and correspondence relating to the contract order. Prices paid by DISTRICT will be those prices listed in the contract. DISTRICT has the right to adjust or return any invoice reflecting incorrect pricing or upon which DISTRICT contract number and/or release number is not listed.

21. **PROMPT PAYMENT DISCOUNT**: Offeror may quote a prompt payment discount based upon early payment; however, discounts offered for less than 30 days will not be considered in making the award. CONTRACTOR shall list payment discount terms on invoices. The prompt payment discount will apply to payments made with DISTRICT Purchasing or Travel Card (major credit card); and checks. The date from which discount time is calculated will be the date a correct invoice is received or receipt of shipment, whichever is later; except that if testing is performed, the date will be the date of acceptance of the merchandise.

22. **PAYMENT**: Payments are normally made within 30 days following the date the order is delivered or the date a correct invoice is received, whichever is later. After 60 days from the date a corrected invoice is received by the appropriate DISTRICT official, CONTRACTOR may assess interest on overdue, undisputed account charges up to a maximum of the interest rate paid by the IRS on taxpayer refund claims, plus 2%, computed similarly as the requirements of U.C.A. § 15-6-3. The IRS rate is adjusted quarterly, and is applied on a per annual basis, on the invoice amount that is overdue. All payments to CONTRACTOR will be remitted by mail, electronic funds transfer, or DISTRICT Purchasing Card (major credit card).
23. **PATENTS, COPYRIGHTS, ETC.** CONTRACTOR will release, indemnify and hold DISTRICT, its officers, agents and employees harmless from liability of any kind or nature, including CONTRACTOR ’s use of any copyrighted or un -copyrighted composition, secret process, patented or un -patented invention or appliance furnished or used in the performance of this contract.

24. **ASSIGNMENT/SUBCONTRACT:** Contractor will not assign, sell, transfer, subcontract or sublet rights, or delegate responsibilities under this contract, in whole or in part, without the prior written approval of DISTRICT.

25. **DEFAULT AND REMEDIES:** Any of the following events will constitute cause for DISTRICT to declare CONTRACTOR in default of this contract: 1) nonperformance of contractual requirements; 2) material breach of any term or condition of this contract. DISTRICT will issue a written notice of default providing a ten (10) day period in which CONTRACTOR will have an opportunity to cure. Time allowed for cure will not diminish or eliminate CONTRACTOR’s liability for damages. If the default remains, after CONTRACTOR has been provided the opportunity to cure, DISTRICT may do one or more of the following: 1) exercise any remedy provided by law; 2) terminate this contract and any related contracts or portions thereof; 3) impose liquidated damages, if liquidated damages are listed in the contract; 4) suspend CONTRACTOR from receiving future solicitations.

26. **FORCE MAJEURE:** Neither party to this contract will be held responsible for delay or default caused by fire, riot, acts of God and/or war which is beyond that party’s reasonable control. DISTRICT may terminate this contract after determining such delay or default will reasonably prevent successful performance of the contract.

27. **PROCUREMENT ETHICS:** CONTRACTOR understands that a person who is interested in any way in the sale of any supplies, services, construction, or insurance to the DISTRICT is violating the law if the person gives or offers to give any compensation, gratuity, contribution, loan or reward, or any promise thereof to any person acting as a procurement officer on behalf of the DISTRICT, or who in any official capacity participates in the procurement of such supplies, services, construction, or insurance, whether it is given for their own use or for the use or benefit of any other person or organization. (U.C.A. § 63G-6a-2304.5).

28. **CONFLICT OF TERMS:** CONTRACTOR Terms and Conditions that apply must be in writing and attached to the contract. No other Terms and Conditions will apply to this contract including terms listed or referenced on CONTRACTOR ’S website, terms listed in a CONTRACTOR quotation/sales order, etc. In the event of any conflict in the contract Terms and Conditions, the order of precedence shall be: 1) Attachment A: District Standard Contract Terms and Conditions; 2) District Contract Signature page(s), 3) District Special Terms and Conditions; 4) Contractor Terms and Conditions.

29. **ENTIRE AGREEMENT:** This agreement, including all Attachments and documents incorporated hereunder, and the related DISTRICT solicitation constitutes the entire agreement between the parties with respect to the subject matter, and supersedes any and all other prior and contemporaneous agreements and understandings between the parties, whether oral or written.
The terms of this Agreement shall supersede any additional or conflicting terms or provisions that may be set forth or printed on CONTRACTOR’S work plans, cost estimate forms, receiving tickets, or any other related standard forms or documents that may subsequently be used to implement, record, or invoice services hereunder from time to time, even if such standard forms or documents have been signed or initialed by a representative of DISTRICT. The parties agree that the terms of this Agreement shall prevail in any dispute between the terms of this Agreement and the terms printed on any such standard forms or documents, and such standard forms or documents shall not be considered written amendments of this Agreement.
TABLE OF CONTENTS

DIVISION 01 – GENERAL REQUIREMENTS

- 01 1000 SUMMARY
- 01 2300 ALTERNATES
- 01 2500 SUBSTITUTION PROCEDURES
- 01 3100 PROJECT MANAGEMENT AND COORDINATION
- 01 3200 CONSTRUCTION PROGRESS DOCUMENTATION
- 01 3300 SUBMITTAL PROCEDURES
- 01 4000 QUALITY REQUIREMENTS
- 01 4200 REFERENCES
- 01 5000 TEMPORARY FACILITIES AND CONTROLS
- 01 6000 PRODUCT REQUIREMENTS
- 01 7300 EXECUTION
- 01 7700 CLOSEOUT PROCEDURES
- 01 7823 OPERATION AND MAINTENANCE DATA
- 01 7839 PROJECT RECORD DOCUMENT
- 01 7900 DEMONSTRATION AND TRAINING

END OF TABLE OF CONTENTS
SECTION 011000 - SUMMARY

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Project information.
 2. Work covered by Contract Documents.
 3. Access to site.
 4. Coordination with occupants.
 5. Work restrictions.

1.2 ACCESS TO SITE

A. General: Each Contractor shall have limited use of Project site for construction operations as indicated on Drawings by the Contract limits and as indicated by requirements of this Section.

B. Use of Site: Limit use of Project site to Mechanical Room and Gymnasium indicated. Do not disturb portions of Project site beyond areas in which the Work is indicated.
 1. Driveways, Walkways, and Entrances: Keep driveways and entrances serving premises clear and available to Owner, Owner’s employees, and emergency vehicles at all times. Do not use these areas for parking or for storage of materials.

C. Condition of Existing Building: Maintain portions of existing building affected by construction operations in a weathertight condition throughout construction period. Repair damage caused by construction operations.

1.3 COORDINATION WITH OCCUPANTS

A. Full Owner Occupancy: Owner will occupy site and existing building(s) during entire construction period. Cooperate with Owner during construction operations to minimize conflicts and facilitate Owner usage. Perform the Work so as not to interfere with Owner’s day-to-day operations. Maintain existing exits unless otherwise indicated.

1.4 WORK RESTRICTIONS

A. Work Restrictions, General: Comply with restrictions on construction operations.
 1. Comply with limitations on use of public streets and with other requirements of authorities having jurisdiction.

B. On-Site Work Hours: Limit work in the existing building to normal business working hours of 7:00 a.m. to 4:00 p.m., Monday through Friday, unless otherwise indicated.

C. Existing Utility Interruptions: Do not interrupt utilities serving facilities occupied by Owner or others unless permitted under the following conditions and then only after providing temporary utility services according to requirements indicated:
 1. Notify Engineer and Owner not less than four days in advance of proposed utility interruptions.

D. Restricted Substances: Use of tobacco products and other controlled substances within the existing building and on Project site is not permitted.
1.5 SPECIFICATION AND DRAWING CONVENTIONS

A. Specification Content: The Specifications use certain conventions for the style of language and the intended meaning of certain terms, words, and phrases when used in particular situations. These conventions are as follows:
 1. Imperative mood and streamlined language are generally used in the Specifications. The words "shall," "shall be," or "shall comply with," depending on the context, are implied where a colon (:) is used within a sentence or phrase.
 2. Specification requirements are to be performed by Contractor unless specifically stated otherwise.

B. Division 01 General Requirements: Requirements of Sections in Division 01 apply to the Work of all Sections in the Specifications.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 011000
SECTION 012300 - ALTERNATES

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes administrative and procedural requirements for alternates.

1.2 DEFINITIONS

A. Alternate: An amount proposed by bidders and stated on the Bid Form for certain work defined in the bidding requirements that may be added to or deducted from the base bid amount if the Owner decides to accept a corresponding change either in the amount of construction to be completed or in the products, materials, equipment, systems, or installation methods described in the Contract Documents.

1. Alternates described in this Section are part of the Work only if enumerated in the Agreement.

2. The cost or credit for each alternate is the net addition to or deduction from the Contract Sum to incorporate alternates into the Work. No other adjustments are made to the Contract Sum.

1.3 PROCEDURES

A. Coordination: Revise or adjust affected adjacent work as necessary to completely integrate work of the alternate into Project.

1. Include as part of each alternate, miscellaneous devices, accessory objects, and similar items incidental to or required for a complete installation whether or not indicated as part of alternate.

B. Execute accepted alternates under the same conditions as other work of the Contract.

C. Schedule: A schedule of alternates is included at the end of this Section. Specification Sections referenced in schedule contain requirements for materials necessary to achieve the work described under each alternate.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 SCHEDULE OF ALTERNATES

A. Alternate No. 1 – Gymnasium Air Handling Unit #1 Upgrades.

B. Alternate No. 2 – Gymnasium Air Handling Unit #2 Upgrades.

END OF SECTION 012300
SECTION 012500 - SUBSTITUTION PROCEDURES

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes administrative and procedural requirements for substitutions.

1.2 DEFINITIONS

A. Substitutions: Changes in products, materials, equipment, and methods of construction from those required by the Contract Documents and proposed by Contractor.
 1. Substitutions for Cause: Changes proposed by Contractor that are required due to changed Project conditions, such as unavailability of product, regulatory changes, or unavailability of required warranty terms.
 2. Substitutions for Convenience: Changes proposed by Contractor or Owner that are not required in order to meet other Project requirements but may offer advantage to Contractor or Owner.

1.3 ACTION SUBMITTALS

A. Substitution Requests: Submit three copies of each request for consideration. Identify product or fabrication or installation method to be replaced. Include Specification Section number and title and Drawing numbers and titles.
 1. Documentation: Show compliance with requirements for substitutions and the following, as applicable:
 a. Statement indicating why specified product or fabrication or installation method cannot be provided, if applicable.
 b. Coordination of information, including a list of changes or revisions needed to other parts of the Work and to construction performed by Owner and separate contractors that will be necessary to accommodate proposed substitution.
 c. Detailed comparison of significant qualities of proposed substitutions with those of the Work specified. Include annotated copy of applicable Specification Section. Significant qualities may include attributes, such as performance, weight, size, durability, visual effect, sustainable design characteristics, warranties, and specific features and requirements indicated. Indicate deviations, if any, from the Work specified.
 d. Product Data, including drawings and descriptions of products and fabrication and installation procedures.
 e. Samples, where applicable or requested.
 f. Certificates and qualification data, where applicable or requested.
 g. List of similar installations for completed projects, with project names and addresses as well as names and addresses of engineers and owners.
 h. Material test reports from a qualified testing agency, indicating and interpreting test results for compliance with requirements indicated.
 i. Research reports evidencing compliance with building code in effect for Project, from ICC-ES.
 j. Detailed comparison of Contractor's construction schedule using proposed substitutions with products specified for the Work, including effect on the overall Contract Time. If specified product or method of construction cannot be provided within the Contract Time, include letter from manufacturer, on manufacturer's letterhead, stating date of receipt of purchase order, lack of availability, or delays in delivery.
 k. Cost information, including a proposal of change, if any, in the Contract Sum.
I. Contractor's certification that proposed substitution complies with requirements in the Contract Documents, except as indicated in substitution request, is compatible with related materials and is appropriate for applications indicated.

m. Contractor's waiver of rights to additional payment or time that may subsequently become necessary because of failure of proposed substitution to produce indicated results.

2. Engineer's Action: If necessary, Engineer will request additional information or documentation for evaluation within seven days of receipt of a request for substitution. Engineer will notify Contractor through Construction Manager of acceptance or rejection of proposed substitution within 15 days of receipt of request, or seven days of receipt of additional information or documentation, whichever is later.

a. Forms of Acceptance: Change Order, Construction Change Directive, or Engineer's Supplemental Instructions for minor changes in the Work.

b. Use product specified if Engineer does not issue a decision on use of a proposed substitution within time allocated.

1.4 QUALITY ASSURANCE

A. Compatibility of Substitutions: Investigate and document compatibility of proposed substitution with related products and materials. Engage a qualified testing agency to perform compatibility tests recommended by manufacturers.

1.5 PROCEDURES

A. Coordination: Revise or adjust affected work as necessary to integrate work of the approved substitutions.

1.6 SUBSTITUTIONS

A. Substitutions for Cause: Submit requests for substitution immediately on discovery of need for change, but not later than 15 days prior to time required for preparation and review of related submittals.

1. Conditions: Engineer will consider Contractor's request for substitution when the following conditions are satisfied. If the following conditions are not satisfied, Engineer will return requests without action, except to record noncompliance with these requirements:

a. Requested substitution is consistent with the Contract Documents and will produce indicated results.

b. Substitution request is fully documented and properly submitted.

c. Requested substitution will not adversely affect Contractor's construction schedule.

d. Requested substitution has received necessary approvals of authorities having jurisdiction.

e. Requested substitution is compatible with other portions of the Work.

f. Requested substitution has been coordinated with other portions of the Work.

g. Requested substitution provides specified warranty.

h. If requested substitution involves more than one contractor, requested substitution has been coordinated with other portions of the Work, is uniform and consistent, is compatible with other products, and is acceptable to all contractors involved.

B. Substitutions for Convenience: Not allowed unless otherwise indicated.
PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 012500
SECTION 013100 - PROJECT MANAGEMENT AND COORDINATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative provisions for coordinating construction operations on Project including, but not limited to, the following:
 1. General coordination procedures.
 2. Coordination drawings.
 3. RFIs.
 4. Digital project management procedures.
 5. Project meetings.

1.3 DEFINITIONS

A. RFI: Request for Information. Request from Owner, Construction Manager, Engineer, or Contractor seeking information required by or clarifications of the Contract Documents.

1.4 INFORMATIONAL SUBMITTALS

A. Subcontract List: Prepare a written summary identifying individuals or firms proposed for each portion of the Work, including those who are to furnish products or equipment fabricated to a special design. Include the following information in tabular form:
 1. Name, address, telephone number, and email address of entity performing subcontract or supplying products.
 2. Number and title of related Specification Section(s) covered by subcontract.
 3. Drawing number and detail references, as appropriate, covered by subcontract.

1.5 GENERAL COORDINATION PROCEDURES

A. Coordination: Coordinate construction operations included in different Sections of the Specifications to ensure efficient and orderly installation of each part of the Work. Coordinate construction operations included in different Sections that depend on each other for proper installation, connection, and operation.
 1. Schedule construction operations in sequence required to obtain the best results where installation of one part of the Work depends on installation of other components, before or after its own installation.
 2. Coordinate installation of different components to ensure maximum performance and accessibility for required maintenance, service, and repair.
 3. Make adequate provisions to accommodate items scheduled for later installation.

B. Administrative Procedures: Coordinate scheduling and timing of required administrative procedures with other construction activities and scheduled activities of other contractors to avoid conflicts and to ensure orderly progress of the Work. Such administrative activities include, but are not limited to, the following:
 1. Preparation of Contractor's construction schedule.
 2. Preparation of the schedule of values.
3. Installation and removal of temporary facilities and controls.
4. Delivery and processing of submittals.
5. Progress meetings.
6. Preinstallation conferences.
7. Project closeout activities.
8. Startup and adjustment of systems.

1.6 COORDINATION DRAWINGS

A. Coordination Drawings, General: Prepare coordination drawings according to requirements in individual Sections, and additionally where installation is not completely indicated on Shop Drawings, where limited space availability necessitates coordination, or if coordination is required to facilitate integration of products and materials fabricated or installed by more than one entity.
 1. Content: Project-specific information, drawn accurately to a scale large enough to indicate and resolve conflicts. Do not base coordination drawings on standard printed data. Include the following information, as applicable:
 a. Indicate functional and spatial relationships of components of architectural, structural, civil, mechanical, and electrical systems.
 b. Indicate dimensions shown on Drawings. Specifically note dimensions that appear to be in conflict with submitted equipment and minimum clearance requirements. Provide alternative sketches to Engineer indicating proposed resolution of such conflicts. Minor dimension changes and difficult installations will not be considered changes to the Contract.

B. Coordination Drawing Organization: Organize coordination drawings as follows:
 1. Floor Plans: Show architectural and structural elements, and mechanical, plumbing, fire-protection, fire-alarm, and electrical Work. Show locations of visible ceiling-mounted devices relative to acoustical ceiling grid. Supplement plan drawings with section drawings where required to adequately represent the Work.
 2. Mechanical Rooms: Provide coordination drawings for mechanical rooms showing plans and elevations of mechanical, plumbing, fire-protection, fire-alarm, and electrical equipment.
 4. Slab Edge and Embedded Items: Indicate slab edge locations and sizes and locations of embedded items for metal fabrications, sleeves, anchor bolts, bearing plates, angles, door floor closers, slab depressions for floor finishes, curbs and housekeeping pads, and similar items.
 5. Review: Engineer will review coordination drawings to confirm that in general the Work is being coordinated, but not for the details of the coordination, which are Contractor's responsibility.

1.7 REQUEST FOR INFORMATION (RFI)

A. General: Immediately on discovery of the need for additional information, clarification, or interpretation of the Contract Documents, Contractor shall prepare and submit an RFI in the form specified.
 1. Engineer will return without response those RFIs submitted to Engineer by other entities controlled by Contractor.
 2. Coordinate and submit RFIs in a prompt manner so as to avoid delays in Contractor's work or work of subcontractors.

B. Content of the RFI: Include a detailed, legible description of item needing information or interpretation and the following:
 1. Project name.
2. Project number.
3. Date.
4. Name of Contractor.
5. Name of Engineer and Construction Manager.
6. RFI number, numbered sequentially.
7. RFI subject.
8. Specification Section number and title and related paragraphs, as appropriate.
9. Drawing number and detail references, as appropriate.
10. Field dimensions and conditions, as appropriate.
11. Contractor's suggested resolution. If Contractor's suggested resolution impacts the Contract Time or the Contract Sum, Contractor shall state impact in the RFI.
12. Contractor's signature.
13. Attachments: Include sketches, descriptions, measurements, photos, Product Data, Shop Drawings, coordination drawings, and other information necessary to fully describe items needing interpretation.

C. RFI Forms: Software-generated form with substantially the same content as indicated above, acceptable to Engineer.

D. Engineer’s and Construction Manager’s Action: Engineer and Construction Manager will review each RFI, determine action required, and respond. Allow seven working days for Engineer’s response for each RFI. RFIs received after 1:00 p.m. will be considered as received the following working day.
1. The following Contractor-generated RFIs will be returned without action:
 a. Requests for approval of submittals.
 b. Requests for approval of substitutions.
 c. Requests for approval of Contractor’s means and methods.
 d. Requests for coordination information already indicated in the Contract Documents.
 e. Requests for adjustments in the Contract Time or the Contract Sum.
 f. Requests for interpretation of Engineer’s actions on submittals.
 g. Incomplete RFIs or inaccurately prepared RFIs.
2. Engineer’s action may include a request for additional information, in which case Engineer’s time for response will date from time of receipt by Engineer or Construction Manager of additional information.
3. Engineer’s action on RFIs that may result in a change to the Contract Time or the Contract Sum may be eligible for Contractor to submit Change Proposal according to Section 012600 “Contract Modification Procedures.”
 a. If Contractor believes the RFI response warrants change in the Contract Time or the Contract Sum, notify Engineer and Construction Manager in writing within 10 days of receipt of the RFI response.

E. RFI Log: Prepare, maintain, and submit a tabular log of RFIs organized by the RFI number. Submit log weekly. Include the following:
1. Project name.
2. Name and address of Contractor.
3. Name and address of Engineer and Construction Manager.
4. RFI number including RFIs that were returned without action or withdrawn.
5. RFI description.
6. Date the RFI was submitted.
7. Date Engineer’s and Construction Manager’s response was received.

F. On receipt of Engineer’s and Construction Manager’s action, update the RFI log and immediately distribute the RFI response to affected parties. Review response and notify Engineer and Construction Manager within seven days if Contractor disagrees with response.
1.8 PROJECT MEETINGS

A. General: Schedule and conduct meetings and conferences at Project site unless otherwise indicated.

B. Preconstruction Conference: Construction Manager will schedule and conduct a preconstruction conference before starting construction, at a time convenient to Owner and Engineer, but no later than 15 days after execution of the Agreement.
 1. Attendees: Authorized representatives of Owner, Engineer, and their consultants; Contractor and its superintendent; major subcontractors; suppliers; and other concerned parties shall attend the conference. Participants at the conference shall be familiar with Project and authorized to conclude matters relating to the Work.
 2. Agenda: Discuss items of significance that could affect progress, including the following:
 a. Responsibilities and personnel assignments.
 b. Tentative construction schedule.
 c. Phasing.
 d. Critical work sequencing and long lead items.
 e. Designation of key personnel and their duties.
 f. Lines of communications.
 g. Use of web-based Project software.
 h. Procedures for processing field decisions and Change Orders.
 i. Procedures for RFI.
 j. Procedures for testing and inspecting.
 k. Procedures for processing Applications for Payment.
 l. Distribution of the Contract Documents.
 m. Submittal procedures.
 n. Sustainable design requirements.
 o. Preparation of Record Documents.
 p. Use of the premises and existing building.
 q. Work restrictions.
 r. Working hours.
 s. Owner's occupancy requirements.
 t. Responsibility for temporary facilities and controls.
 u. Procedures for moisture and mold control.
 v. Procedures for disruptions and shutdowns.
 w. Construction waste management and recycling.
 x. Parking availability.
 y. Office, work, and storage areas.
 z. Equipment deliveries and priorities.
 aa. First aid.
 cc. Progress cleaning.

 3. Minutes: Entity responsible for conducting meeting will record and distribute meeting minutes.

C. Preinstallation Conferences: Conduct a preinstallation conference at Project site before each construction activity when required by other sections and when required for coordination with other construction.
 1. Attendees: Installer and representatives of manufacturers and fabricators involved in or affected by the installation and its coordination or integration with other materials and installations that have preceded or will follow, shall attend the meeting. Advise Engineer, Construction Manager of scheduled meeting dates.
 2. Agenda: Review progress of other construction activities and preparations for the particular activity under consideration, including requirements for the following:
b. Options.
c. Related RFI.
d. Related Change Orders.
e. Purchases.
f. Deliveries.
g. Submittals.
h. Sustainable design requirements.
i. Review of mockups.
j. Possible conflicts.
k. Compatibility requirements.
l. Time schedules.
m. Weather limitations.
n. Manufacturer's written instructions.
o. Warranty requirements.
q. Acceptability of substrates.
r. Temporary facilities and controls.
s. Space and access limitations.
t. Regulations of authorities having jurisdiction.
u. Testing and inspecting requirements.
v. Installation procedures.
w. Coordination with other work.
x. Required performance results.
y. Protection of adjacent work.
z. Protection of construction and personnel.

3. Record significant conference discussions, agreements, and disagreements, including required corrective measures and actions.

4. Reporting: Distribute minutes of the meeting to each party present and to other parties requiring information.

5. Do not proceed with installation if the conference cannot be successfully concluded. Initiate whatever actions are necessary to resolve impediments to performance of the Work and reconvene the conference at earliest feasible date.

D. Progress Meetings: Conduct progress meetings at regular intervals.
 1. Coordinate dates of meetings with preparation of payment requests.
 2. Attendees: In addition to representatives of Owner, and Engineer, each contractor, subcontractor, supplier, and other entity concerned with current progress or involved in planning, coordination, or performance of future activities shall be represented at these meetings. All participants at the meeting shall be familiar with Project and authorized to conclude matters relating to the Work.
 3. Agenda: Review and correct or approve minutes of previous progress meeting. Review other items of significance that could affect progress. Include topics for discussion as appropriate to status of Project.
 a. Contractor's Construction Schedule: Review progress since the last meeting. Determine whether each activity is on time, ahead of schedule, or behind schedule, in relation to Contractor's construction schedule. Determine how construction behind schedule will be expedited; secure commitments from parties involved to do so. Discuss whether schedule revisions are required to ensure that current and subsequent activities will be completed within the Contract Time.
 1) Review schedule for next period.
 b. Review present and future needs of each entity present, including the following:
 1) Interface requirements.
 2) Sequence of operations.
 3) Resolution of BIM component conflicts.
4) Status of submittals.
5) Status of sustainable design documentation.
6) Deliveries.
7) Off-site fabrication.
8) Access.
9) Site use.
10) Temporary facilities and controls.
11) Progress cleaning.
12) Quality and work standards.
13) Status of correction of deficient items.
14) Field observations.
15) Status of RFIs.
16) Status of Proposal Requests.
17) Pending changes.
18) Status of Change Orders.
19) Pending claims and disputes.
20) Documentation of information for payment requests.

4. Minutes: Entity responsible for conducting the meeting will record and distribute the meeting minutes to each party present and to parties requiring information.
 a. Schedule Updating: Revise Contractor's construction schedule after each progress meeting where revisions to the schedule have been made or recognized. Issue revised schedule concurrently with the report of each meeting.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 013100
SECTION 013200 - CONSTRUCTION PROGRESS DOCUMENTATION

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes administrative and procedural requirements for documenting the progress of construction during performance of the Work, including the following:
 1. Contractor's Construction Schedule.
 2. Construction schedule updating reports.
 3. Daily construction reports.
 4. Site condition reports.

1.2 DEFINITIONS

A. Activity: A discrete part of a project that can be identified for planning, scheduling, monitoring, and controlling the construction Project. Activities included in a construction schedule consume time and resources.
 1. Critical Activity: An activity on the critical path that must start and finish on the planned early start and finish times.
 2. Predecessor Activity: An activity that precedes another activity in the network.
 3. Successor Activity: An activity that follows another activity in the network.

B. CPM: Critical path method, which is a method of planning and scheduling a construction project where activities are arranged based on activity relationships. Network calculations determine when activities can be performed and the critical path of Project.

C. Critical Path: The longest connected chain of interdependent activities through the network schedule that establishes the minimum overall Project duration and contains no float.

D. Event: The starting or ending point of an activity.

1.3 INFORMATIONAL SUBMITTALS

A. Format for Submittals: Submit required submittals in the following format:
 1. Working electronic copy of schedule file, where indicated.
 2. PDF file.
 3. Two paper copies, of sufficient size to display entire period or schedule, as required.

B. Startup Network Diagram: Of size required to display entire network for entire construction period. Show logic ties for activities.

C. Contractor's Construction Schedule: Initial schedule, of size required to display entire schedule for entire construction period.
 1. Submit a working digital copy of schedule, using software indicated, and labeled to comply with requirements for submittals.

D. CPM Reports: Concurrent with CPM schedule, submit each of the following reports. Format for each activity in reports shall contain activity number, activity description, original duration, remaining duration, early start date, early finish date, late start date, late finish date, and total float in calendar days.
 1. Activity Report: List of activities sorted by activity number and then early start date, or actual start date if known.
2. Logic Report: List of preceding and succeeding activities for each activity, sorted in ascending order by activity number and then by early start date, or actual start date if known.

E. Construction Schedule Updating Reports: Submit with Applications for Payment.

F. Daily Construction Reports: Submit at weekly intervals.

G. Site Condition Reports: Submit at time of discovery of differing conditions.

1.4 COORDINATION

A. Coordinate Contractor's Construction Schedule with the schedule of values, list of subcontracts, submittal schedule, progress reports, payment requests, and other required schedules and reports.
 1. Secure time commitments for performing critical elements of the Work from entities involved.
 2. Coordinate each construction activity in the network with other activities and schedule them in proper sequence.

1.5 CONTRACTOR'S CONSTRUCTION SCHEDULE, GENERAL

A. Computer Scheduling Software: Prepare schedules using current version of a program that has been developed specifically to manage construction schedules.

B. Time Frame: Extend schedule from date established for the Notice to Proceed to date of Substantial Completion.
 1. Contract completion date shall not be changed by submission of a schedule that shows an early completion date, unless specifically authorized by Change Order.

C. Activities: Treat each floor or separate area as a separate numbered activity for each main element of the Work. Comply with the following:
 1. Activity Duration: Define activities so no activity is longer than 20 days, unless specifically allowed by Engineer.
 2. Procurement Activities: Include procurement process activities for the following long lead items and major items, requiring a cycle of more than 60 days, as separate activities in schedule. Procurement cycle activities include, but are not limited to, submittals, approvals, purchasing, fabrication, and delivery.
 4. Startup and Testing Time: Include no fewer than 15 days for startup and testing.
 5. Commissioning Time: Include no fewer than 15 days for commissioning.
 6. Substantial Completion: Indicate completion in advance of date established for Substantial Completion, and allow time for Engineer's and Construction Manager's administrative procedures necessary for certification of Substantial Completion.
 7. Punch List and Final Completion: Include not more than 15 days for completion of punch list items and final completion.

D. Constraints: Include constraints and work restrictions indicated in the Contract Documents and as follows in schedule, and show how the sequence of the Work is affected.
 1. Phasing: Arrange list of activities on schedule by phase.
2. Owner-Furnished Products: Include a separate activity for each product. Include delivery date indicated in Section 011000 "Summary." Delivery dates indicated stipulate the earliest possible delivery date.

3. Work Restrictions: Show the effect of the following items on the schedule:
 a. Coordination with existing construction.
 b. Limitations of continued occupancies.
 c. Uninterruptible services.
 d. Partial occupancy before Substantial Completion.
 e. Use-of-premises restrictions.
 g. Seasonal variations.
 h. Environmental control.

E. Milestones: Include milestones indicated in the Contract Documents in schedule, including, but not limited to, the Notice to Proceed, Substantial Completion, and final completion, and the following interim milestones:

F. Upcoming Work Summary: Prepare summary report indicating activities scheduled to occur or commence prior to submittal of next schedule update. Summarize the following issues:
 1. Unresolved issues.
 2. Unanswered Requests for Information.
 3. Rejected or unreturned submittals.
 4. Notations on returned submittals.
 5. Pending modifications affecting the Work and the Contract Time.

G. Contractor's Construction Schedule Updating: At monthly intervals, update schedule to reflect actual construction progress and activities. Issue schedule one week before each regularly scheduled progress meeting.
 1. Revise schedule immediately after each meeting or other activity where revisions have been recognized or made. Issue updated schedule concurrently with the report of each such meeting.
 2. Include a report with updated schedule that indicates every change, including, but not limited to, changes in logic, durations, actual starts and finishes, and activity durations.
 3. As the Work progresses, indicate final completion percentage for each activity.

H. Recovery Schedule: When periodic update indicates the Work is 14 or more calendar days behind the current approved schedule, submit a separate recovery schedule indicating means by which Contractor intends to regain compliance with the schedule. Indicate changes to working hours, working days, crew sizes, equipment required to achieve compliance, and date by which recovery will be accomplished.

I. Distribution: Distribute copies of approved schedule to Engineer, Construction Manager, Owner, separate contractors, testing and inspecting agencies, and other parties identified by Contractor with a need-to-know schedule responsibility.
 1. Post copies in Project meeting rooms and temporary field offices.
 2. When revisions are made, distribute updated schedules to the same parties and post in the same locations. Delete parties from distribution when they have completed their assigned portion of the Work and are no longer involved in performance of construction activities.

1.6 GANTT-CHART SCHEDULE REQUIREMENTS

A. Gantt-Chart Schedule: Submit a comprehensive, fully developed, horizontal, Gantt-chart-type, Contractor's Construction Schedule within 15 days of date established for the Notice to Proceed.
B. Preparation: Indicate each significant construction activity separately. Identify first workday of each week with a continuous vertical line.
 1. For construction activities that require three months or longer to complete, indicate an estimated completion percentage in 10 percent increments within time bar.

1.7 REPORTS

A. Daily Construction Reports: Prepare a daily construction report recording the following information concerning events at Project site:
 1. List of subcontractors at Project site.
 2. List of separate contractors at Project site.
 3. Approximate count of personnel at Project site.
 4. Equipment at Project site.
 5. Material deliveries.
 6. High and low temperatures and general weather conditions, including presence of rain or snow.
 8. Accidents.
 9. Meetings and significant decisions.
 10. Stoppages, delays, shortages, and losses.
 11. Meter readings and similar recordings.
 13. Orders and requests of authorities having jurisdiction.
 14. Change Orders received and implemented.
 15. Construction Change Directives received and implemented.
 16. Services connected and disconnected.
 17. Equipment or system tests and startups.
 18. Partial completions and occupancies.
 19. Substantial Completions authorized.

B. Site Condition Reports: Immediately on discovery of a difference between site conditions and the Contract Documents, prepare and submit a detailed report. Submit with a Request for Information. Include a detailed description of the differing conditions, together with recommendations for changing the Contract Documents.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 013200
SECTION 013300 - SUBMITTAL PROCEDURES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Submittal schedule requirements.
 2. Administrative and procedural requirements for submittals.

1.2 DEFINITIONS

A. Action Submittals: Written and graphic information and physical samples that require Engineer's and Construction Manager's responsive action. Action submittals are those submittals indicated in individual Specification Sections as "action submittals."

B. Informational Submittals: Written and graphic information and physical samples that do not require Engineer's and Construction Manager's responsive action. Submittals may be rejected for not complying with requirements. Informational submittals are those submittals indicated in individual Specification Sections as "informational submittals."

1.3 SUBMITTAL SCHEDULE

A. Submittal Schedule: Submit, as an action submittal, a list of submittals, arranged in chronological order by dates required by construction schedule. Include time required for review, ordering, manufacturing, fabrication, and delivery when establishing dates. Include additional time required for making corrections or revisions to submittals noted by Engineer and Construction Manager and additional time for handling and reviewing submittals required by those corrections.

1.4 SUBMITTAL FORMATS

A. Submittal Information: Include the following information in each submittal:
 1. Project name.
 2. Date.
 3. Name of Engineer.
 4. Name of Construction Manager.
 5. Name of Contractor.
 6. Name of firm or entity that prepared submittal.
 7. Names of subcontractor, manufacturer, and supplier.
 8. Unique submittal number, including revision identifier. Include Specification Section number with sequential alphanumeric identifier; and alphanumeric suffix for resubmittals.
 9. Category and type of submittal.
 10. Submittal purpose and description.
 11. Number and title of Specification Section, with paragraph number and generic name for each of multiple items.
 12. Drawing number and detail references, as appropriate.
 13. Indication of full or partial submittal.
 14. Location(s) where product is to be installed, as appropriate.
 15. Other necessary identification.
 17. Signature of transmitter.
B. Options: Identify options requiring selection by Engineer.

C. Deviations and Additional Information: On each submittal, clearly indicate deviations from requirements in the Contract Documents, including minor variations and limitations; include relevant additional information and revisions, other than those requested by Engineer and Construction Manager on previous submittals. Indicate by highlighting on each submittal or noting on attached separate sheet.

D. Paper Submittals:
 1. Place a permanent label or title block on each submittal item for identification; include name of firm or entity that prepared submittal.
 2. Provide a space approximately 6 by 8 inches on label or beside title block to record Contractor's review and approval markings and action taken by Engineer and Construction Manager.
 3. Action Submittals: Submit three paper copies of each submittal unless otherwise indicated. Engineer, through Construction Manager, will return two copies.
 4. Informational Submittals: Submit two paper copies of each submittal unless otherwise indicated. Engineer and Construction Manager will not return copies.
 5. Transmittal for Submittals: Assemble each submittal individually and appropriately for transmittal and handling. Transmit each submittal using transmittal form.

E. PDF Submittals: Prepare submittals as PDF package, incorporating complete information into each PDF file. Name PDF file with submittal number.

1.5 SUBMITTAL PROCEDURES

A. Prepare and submit submittals required by individual Specification Sections. Types of submittals are indicated in individual Specification Sections.
 1. Email: Prepare submittals as PDF package, and transmit to Engineer by sending via email. Include PDF transmittal form. Include information in email subject line as requested by Engineer.
 2. Web-Based Project Software: Prepare submittals in PDF form, and upload to web-based Project software website. Enter required data in web-based software site to fully identify submittal.
 3. Paper: Prepare submittals in paper form, and deliver to Engineer.

B. Coordination: Coordinate preparation and processing of submittals with performance of construction activities.
 1. Coordinate each submittal with fabrication, purchasing, testing, delivery, other submittals, and related activities that require sequential activity.
 2. Submit all submittal items required for each Specification Section concurrently unless partial submittals for portions of the Work are indicated on approved submittal schedule.
 3. Submit action submittals and informational submittals required by the same Specification Section as separate packages under separate transmittals.

C. Processing Time: Allow time for submittal review, including time for resubmittals, as follows. Time for review shall commence on Engineer's receipt of submittal. No extension of the Contract Time will be authorized because of failure to transmit submittals enough in advance of the Work to permit processing, including resubmittals.
 1. Initial Review: Allow 15 days for initial review of each submittal. Allow additional time if coordination with subsequent submittals is required. Engineer will advise Contractor when a submittal being processed must be delayed for coordination.
 2. Resubmittal Review: Allow 15 days for review of each resubmittal.

D. Resubmittals: Make resubmittals in same form and number of copies as initial submittal.
E. Distribution: Furnish copies of final submittals to manufacturers, subcontractors, suppliers, fabricators, installers, authorities having jurisdiction, and others as necessary for performance of construction activities. Show distribution on transmittal forms.

F. Use for Construction: Retain complete copies of submittals on Project site. Use only final action submittals that are marked with approval notation from Engineer's and Construction Manager's action stamp.

1.6 SUBMITTAL REQUIREMENTS

A. Product Data: Collect information into a single submittal for each element of construction and type of product or equipment.
 1. If information must be specially prepared for submittal because standard published data are unsuitable for use, submit as Shop Drawings, not as Product Data.
 2. Mark each copy of each submittal to show which products and options are applicable.
 3. Include the following information, as applicable:
 a. Manufacturer's catalog cuts.
 b. Manufacturer's product specifications.
 c. Standard color charts.
 d. Statement of compliance with specified referenced standards.
 e. Testing by recognized testing agency.
 f. Application of testing agency labels and seals.
 g. Notation of coordination requirements.
 h. Availability and delivery time information.
 4. For equipment, include the following in addition to the above, as applicable:
 a. Wiring diagrams that show factory-installed wiring.
 b. Printed performance curves.
 c. Operational range diagrams.
 d. Clearances required to other construction, if not indicated on accompanying Shop Drawings.
 5. Submit Product Data before Shop Drawings, and before or concurrent with Samples.

B. Shop Drawings: Prepare Project-specific information, drawn accurately to scale. Do not base Shop Drawings on reproductions of the Contract Documents or standard printed data unless submittal based on Engineer's digital data drawing files is otherwise permitted.
 1. Preparation: Fully illustrate requirements in the Contract Documents. Include the following information, as applicable:
 a. Identification of products.
 b. Schedules.
 c. Compliance with specified standards.
 d. Notation of coordination requirements.
 e. Notation of dimensions established by field measurement.
 f. Relationship and attachment to adjoining construction clearly indicated.
 g. Seal and signature of professional engineer if specified.
 2. Paper Sheet Size: Except for templates, patterns, and similar full-size Drawings, submit Shop Drawings on sheets at least 8-1/2 by 11 inches, but no larger than 30 by 42 inches.
 a. Two opaque (bond) copies of each submittal. Engineer, through Construction Manager, will return one copy(ies).
 b. Three opaque copies of each submittal. Engineer and Construction Manager will retain two copies; remainder will be returned.

C. Samples: Submit Samples for review of kind, color, pattern, and texture for a check of these characteristics with other materials.
 1. Transmit Samples that contain multiple, related components such as accessories together in one submittal package.
2. Identification: Permanently attach label on unexposed side of Samples that includes the following:
 a. Project name and submittal number.
 b. Generic description of Sample.
 c. Product name and name of manufacturer.
 d. Sample source.
 e. Number and title of applicable Specification Section.
 f. Specification paragraph number and generic name of each item.

3. Email Transmittal: Provide PDF transmittal. Include digital image file illustrating Sample characteristics, and identification information for record.

4. Web-Based Project Software: Prepare submittals in PDF form, and upload to web-based Project software website. Enter required data in web-based software site to fully identify submittal.

5. Paper Transmittal: Include paper transmittal including complete submittal information indicated.

6. Disposition: Maintain sets of approved Samples at Project site, available for quality-control comparisons throughout the course of construction activity. Sample sets may be used to determine final acceptance of construction associated with each set.
 a. Samples that may be incorporated into the Work are indicated in individual Specification Sections. Such Samples must be in an undamaged condition at time of use.
 b. Samples not incorporated into the Work, or otherwise designated as Owner's property, are the property of Contractor.

7. Samples for Initial Selection: Submit manufacturer's color charts consisting of units or sections of units showing the full range of colors, textures, and patterns available.
 a. Number of Samples: Submit one full set(s) of available choices where color, pattern, texture, or similar characteristics are required to be selected from manufacturer's product line. Engineer, through Construction Manager, will return submittal with options selected.

8. Samples for Verification: Submit full-size units or Samples of size indicated, prepared from same material to be used for the Work, cured and finished in manner specified, and physically identical with material or product proposed for use, and that show full range of color and texture variations expected. Samples include, but are not limited to, the following: partial sections of manufactured or fabricated components; small cuts or containers of materials; complete units of repetitively used materials; swatches showing color, texture, and pattern; color range sets; and components used for independent testing and inspection.
 a. Number of Samples: Submit three sets of Samples. Engineer and Construction Manager will retain two Sample sets; remainder will be returned. Mark up and retain one returned Sample set as a project record Sample.
 1) Submit a single Sample where assembly details, workmanship, fabrication techniques, connections, operation, and other similar characteristics are to be demonstrated.
 2) If variation in color, pattern, texture, or other characteristic is inherent in material or product represented by a Sample, submit at least three sets of paired units that show approximate limits of variations.

D. Product Schedule: As required in individual Specification Sections, prepare a written summary indicating types of products required for the Work and their intended location. Include the following information in tabular form:

E. Qualification Data: Prepare written information that demonstrates capabilities and experience of firm or person. Include lists of completed projects with project names and addresses, contact information of engineers and owners, and other information specified.
F. Design Data: Prepare and submit written and graphic information indicating compliance with indicated performance and design criteria in individual Specification Sections. Include list of assumptions and summary of loads. Include load diagrams if applicable. Provide name and version of software, if any, used for calculations. Number each page of submittal.

G. Certificates:
1. Certificates and Certifications Submittals: Submit a statement that includes signature of entity responsible for preparing certification. Certificates and certifications shall be signed by an officer or other individual authorized to sign documents on behalf of that entity. Provide a notarized signature where indicated.
2. Installer Certificates: Submit written statements on manufacturer's letterhead certifying that Installer complies with requirements in the Contract Documents and, where required, is authorized by manufacturer for this specific Project.
3. Manufacturer Certificates: Submit written statements on manufacturer's letterhead certifying that manufacturer complies with requirements in the Contract Documents. Include evidence of manufacturing experience where required.
4. Material Certificates: Submit written statements on manufacturer's letterhead certifying that material complies with requirements in the Contract Documents.
5. Product Certificates: Submit written statements on manufacturer's letterhead certifying that product complies with requirements in the Contract Documents.

H. Test and Research Reports:
1. Compatibility Test Reports: Submit reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting results of compatibility tests performed before installation of product. Include written recommendations for primers and substrate preparation needed for adhesion.
2. Field Test Reports: Submit written reports indicating and interpreting results of field tests performed either during installation of product or after product is installed in its final location, for compliance with requirements in the Contract Documents.
3. Material Test Reports: Submit reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting test results of material for compliance with requirements in the Contract Documents.
4. Preconstruction Test Reports: Submit reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting results of tests performed before installation of product, for compliance with performance requirements in the Contract Documents.
5. Product Test Reports: Submit written reports indicating that current product produced by manufacturer complies with requirements in the Contract Documents. Base reports on evaluation of tests performed by manufacturer and witnessed by a qualified testing agency, or on comprehensive tests performed by a qualified testing agency.
6. Research Reports: Submit written evidence, from a model code organization acceptable to authorities having jurisdiction, that product complies with building code in effect for Project. Include the following information:
 a. Name of evaluation organization.
 b. Date of evaluation.
 c. Time period when report is in effect.
 d. Product and manufacturers' names.
 e. Description of product.
 f. Test procedures and results.
 g. Limitations of use.
1.7 DELEGATED-DESIGN SERVICES

A. Performance and Design Criteria: Where professional design services or certifications by a design professional are specifically required of Contractor by the Contract Documents, provide products and systems complying with specific performance and design criteria indicated.
 1. If criteria indicated are insufficient to perform services or certification required, submit a written request for additional information to Engineer.

B. Delegated-Design Services Certification: In addition to Shop Drawings, Product Data, and other required submittals, submit [digitally signed PDF file] and three paper copies of certificate, signed and sealed by the responsible design professional, for each product and system specifically assigned to Contractor to be designed or certified by a design professional.
 1. Indicate that products and systems comply with performance and design criteria in the Contract Documents. Include list of codes, loads, and other factors used in performing these services.

1.8 CONTRACTOR'S REVIEW

A. Action Submittals and Informational Submittals: Review each submittal and check for coordination with other Work of the Contract and for compliance with the Contract Documents. Note corrections and field dimensions. Mark with approval stamp before submitting to Engineer and Construction Manager.

B. Contractor's Approval: Indicate Contractor's approval for each submittal with a uniform approval stamp. Include name of reviewer, date of Contractor's approval, and statement certifying that submittal has been reviewed, checked, and approved for compliance with the Contract Documents.
 1. Engineer and Construction Manager will not review submittals received from Contractor that do not have Contractor's review and approval.

1.9 ENGINEER'S REVIEW

A. Action Submittals: Engineer will review each submittal, indicate corrections or revisions required, and return it.
 1. PDF Submittals: Engineer Manager will indicate, via submittal action form on each submittal, the appropriate action to be taken by the contractor.

B. Incomplete submittals are unacceptable, will be considered nonresponsive, and will be returned for resubmittal without review.

C. Engineer and Construction Manager will discard submittals received from sources other than Contractor.

D. Submittals not required by the Contract Documents will be returned by Engineer without action.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 013300
SECTION 014000 - QUALITY REQUIREMENTS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes administrative and procedural requirements for quality assurance and quality control.

B. Testing and inspection services are required to verify compliance with requirements specified or indicated. These services do not relieve Contractor of responsibility for compliance with the Contract Document requirements.
 1. Specified tests, inspections, and related actions do not limit Contractor's other quality-assurance and quality-control procedures that facilitate compliance with the Contract Document requirements.
 2. Requirements for Contractor to provide quality-assurance and quality-control services required by Engineer, Owner, or authorities having jurisdiction are not limited by provisions of this Section.

1.2 DEFINITIONS

A. Experienced: When used with an entity or individual, "experienced" unless otherwise further described means having successfully completed a minimum of five previous projects similar in nature, size, and extent to this Project; being familiar with special requirements indicated; and having complied with requirements of authorities having jurisdiction.

B. Field Quality-Control Tests: Tests and inspections that are performed on-site for installation of the Work and for completed Work.

C. Installer/Applicator/Erector: Contractor or another entity engaged by Contractor as an employee, Subcontractor, or Sub-subcontractor, to perform a particular construction operation, including installation, erection, application, assembly, and similar operations.
 1. Use of trade-specific terminology in referring to a trade or entity does not require that certain construction activities be performed by accredited or unionized individuals, or that requirements specified apply exclusively to specific trade(s).

D. Preconstruction Testing: Tests and inspections performed specifically for Project before products and materials are incorporated into the Work, to verify performance or compliance with specified criteria.

E. Product Tests: Tests and inspections that are performed by a nationally recognized testing laboratory (NRTL) according to 29 CFR 1910.7, by a testing agency accredited according to NIST’s National Voluntary Laboratory Accreditation Program (NVLAP), or by a testing agency qualified to conduct product testing and acceptable to authorities having jurisdiction, to establish product performance and compliance with specified requirements.

F. Source Quality-Control Tests: Tests and inspections that are performed at the source; for example, plant, mill, factory, or shop.

G. Testing Agency: An entity engaged to perform specific tests, inspections, or both. Testing laboratory shall mean the same as testing agency.
H. Quality-Assurance Services: Activities, actions, and procedures performed before and during execution of the Work to guard against defects and deficiencies and substantiate that proposed construction will comply with requirements.

I. Quality-Control Services: Tests, inspections, procedures, and related actions during and after execution of the Work to evaluate that actual products incorporated into the Work and completed construction comply with requirements. Contractor's quality-control services do not include contract administration activities performed by Engineer or Construction Manager.

1.3 DELEGATED-DESIGN SERVICES

A. Performance and Design Criteria: Where professional design services or certifications by a design professional are specifically required of Contractor by the Contract Documents, provide products and systems complying with specific performance and design criteria indicated.

1.4 CONFLICTING REQUIREMENTS

A. Conflicting Standards and Other Requirements: If compliance with two or more standards or requirements are specified and the standards or requirements establish different or conflicting requirements for minimum quantities or quality levels, comply with the most stringent requirement. Refer conflicting requirements that are different, but apparently equal, to Engineer for direction before proceeding.

B. Minimum Quantity or Quality Levels: The quantity or quality level shown or specified shall be the minimum provided or performed. The actual installation may comply exactly with the minimum quantity or quality specified, or it may exceed the minimum within reasonable limits. To comply with these requirements, indicated numeric values are minimum or maximum, as appropriate, for the context of requirements. Refer uncertainties to Engineer for a decision before proceeding.

1.5 ACTION SUBMITTALS

A. Delegated-Design Services Submittal: In addition to Shop Drawings, Product Data, and other required submittals, submit a statement signed and sealed by the responsible design professional, for each product and system specifically assigned to Contractor to be designed or certified by a design professional, indicating that the products and systems are in compliance with performance and design criteria indicated. Include list of codes, loads, and other factors used in performing these services.

1.6 INFORMATIONAL SUBMITTALS

A. Contractor's Statement of Responsibility: When required by authorities having jurisdiction, submit copy of written statement of responsibility submitted to authorities having jurisdiction before starting work on the following systems:

 1. Seismic-force-resisting system, designated seismic system, or component listed in the Statement of Special Inspections.
 2. Main wind-force-resisting system or a wind-resisting component listed in the Statement of Special Inspections.

B. Testing Agency Qualifications: For testing agencies specified in "Quality Assurance" Article to demonstrate their capabilities and experience. Include proof of qualifications in the form of a recent report on the inspection of the testing agency by a recognized authority.
C. Permits, Licenses, and Certificates: For Owner's record, submit copies of permits, licenses, certifications, inspection reports, releases, jurisdictional settlements, notices, receipts for fee payments, judgments, correspondence, records, and similar documents established for compliance with standards and regulations bearing on performance of the Work.

1.7 REPORTS AND DOCUMENTS

A. Test and Inspection Reports: Prepare and submit certified written reports specified in other Sections. Include the following:
1. Date of issue.
2. Project title and number.
3. Name, address, telephone number, and email address of testing agency.
4. Dates and locations of samples and tests or inspections.
5. Names of individuals making tests and inspections.
6. Description of the Work and test and inspection method.
8. Complete test or inspection data.
9. Test and inspection results and an interpretation of test results.
10. Record of temperature and weather conditions at time of sample taking and testing and inspection.
11. Comments or professional opinion on whether tested or inspected Work complies with the Contract Document requirements.
12. Name and signature of laboratory inspector.
13. Recommendations on retesting and reinspecting.

B. Manufacturer's Technical Representative's Field Reports: Prepare written information documenting manufacturer's technical representative’s tests and inspections specified in other Sections. Include the following:
2. Statement that products at Project site comply with requirements.
3. Summary of installation procedures being followed, whether they comply with requirements and, if not, what corrective action was taken.
4. Results of operational and other tests and a statement of whether observed performance complies with requirements.
5. Other required items indicated in individual Specification Sections.

C. Factory-Authorized Service Representative's Reports: Prepare written information documenting manufacturer's factory-authorized service representative’s tests and inspections specified in other Sections. Include the following:
1. Statement that equipment complies with requirements.
2. Results of operational and other tests and a statement of whether observed performance complies with requirements.
3. Other required items indicated in individual Specification Sections.

1.8 QUALITY ASSURANCE

A. General: Qualifications paragraphs in this article establish the minimum qualification levels required; individual Specification Sections specify additional requirements.

B. Manufacturer Qualifications: A firm experienced in manufacturing products or systems similar to those indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to produce required units. As applicable, procure products from manufacturers able to meet qualification requirements, warranty requirements, and technical or factory-authorized service representative requirements.
C. Fabricator Qualifications: A firm experienced in producing products similar to those indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to produce required units.

D. Installer Qualifications: A firm or individual experienced in installing, erecting, applying, or assembling work similar in material, design, and extent to that indicated for this Project, whose work has resulted in construction with a record of successful in-service performance.

E. Professional Engineer Qualifications: A professional engineer who is legally qualified to practice in jurisdiction where Project is located and who is experienced in providing engineering services of the kind indicated. Engineering services are defined as those performed for installations of the system, assembly, or products that are similar in material, design, and extent to those indicated for this Project.

F. Specialists: Certain Specification Sections require that specific construction activities shall be performed by entities who are recognized experts in those operations. Specialists shall satisfy qualification requirements indicated and shall be engaged for the activities indicated.
 1. Requirements of authorities having jurisdiction shall supersede requirements for specialists.

G. Testing Agency Qualifications: An NRTL, an NVLAP, or an independent agency with the experience and capability to conduct testing and inspection indicated, as documented according to ASTM E 329; and with additional qualifications specified in individual Sections; and, where required by authorities having jurisdiction, that is acceptable to authorities.

H. Manufacturer’s Technical Representative Qualifications: An authorized representative of manufacturer who is trained and approved by manufacturer to observe and inspect installation of manufacturer’s products that are similar in material, design, and extent to those indicated for this Project.

I. Factory-Authorized Service Representative Qualifications: An authorized representative of manufacturer who is trained and approved by manufacturer to inspect installation of manufacturer’s products that are similar in material, design, and extent to those indicated for this Project.

J. Preconstruction Testing: Where testing agency is indicated to perform preconstruction testing for compliance with specified requirements for performance and test methods, comply with the following:
 1. Contractor responsibilities include the following:
 a. Provide test specimens representative of proposed products and construction.
 b. Submit specimens in a timely manner with sufficient time for testing and analyzing results to prevent delaying the Work.
 c. Build laboratory mockups at testing facility using personnel, products, and methods of construction indicated for the completed Work.
 d. When testing is complete, remove test specimens and test assemblies, and mockups, and laboratory mockups; do not reuse products on Project.

1.9 QUALITY CONTROL

A. Owner Responsibilities: Where quality-control services are indicated as Owner’s responsibility, Owner will engage a qualified testing agency to perform these services.
 1. Owner will furnish Contractor with names, addresses, and telephone numbers of testing agencies engaged and a description of types of testing and inspection they are engaged to perform.
2. Costs for retesting and reinspecting construction that replaces or is necessitated by work that failed to comply with the Contract Documents will be charged to Contractor, and the Contract Sum will be adjusted by Change Order.

B. Contractor Responsibilities: Tests and inspections not explicitly assigned to Owner are Contractor's responsibility. Perform additional quality-control activities, whether specified or not, to verify and document that the Work complies with requirements.
 1. Engage a qualified testing agency to perform quality-control services.
 a. Contractor shall not employ same entity engaged by Owner, unless agreed to in writing by Owner.
 2. Notify testing agencies at least 24 hours in advance of time when Work that requires testing or inspection will be performed.
 3. Where quality-control services are indicated as Contractor's responsibility, submit a certified written report, in duplicate, of each quality-control service.
 4. Testing and inspection requested by Contractor and not required by the Contract Documents are Contractor's responsibility.
 5. Submit additional copies of each written report directly to authorities having jurisdiction, when they so direct.

C. Retesting/Reinspecting: Regardless of whether original tests or inspections were Contractor's responsibility, provide quality-control services, including retesting and reinspecting, for construction that replaced Work that failed to comply with the Contract Documents.

D. Testing Agency Responsibilities: Cooperate with Engineer, and Contractor in performance of duties. Provide qualified personnel to perform required tests and inspections.
 1. Notify Engineer and Contractor promptly of irregularities or deficiencies observed in the Work during performance of its services.
 2. Determine the locations from which test samples will be taken and in which in-situ tests are conducted.
 3. Conduct and interpret tests and inspections and state in each report whether tested and inspected work complies with or deviates from requirements.
 4. Submit a certified written report, in duplicate, of each test, inspection, and similar quality-control service through Contractor.
 5. Do not release, revoke, alter, or increase the Contract Document requirements or approve or accept any portion of the Work.
 6. Do not perform duties of Contractor.

E. Manufacturer's Field Services: Where indicated, engage a factory-authorized service representative to inspect field-assembled components and equipment installation, including service connections. Report results in writing as specified in Section 013300 "Submittal Procedures."

F. Manufacturer's Technical Services: Where indicated, engage a manufacturer's technical representative to observe and inspect the Work. Manufacturer's technical representative's services include participation in preinstallation conferences, examination of substrates and conditions, verification of materials, observation of Installer activities, inspection of completed portions of the Work, and submittal of written reports.

G. Associated Contractor Services: Cooperate with agencies and representatives performing required tests, inspections, and similar quality-control services, and provide reasonable auxiliary services as requested. Notify agency sufficiently in advance of operations to permit assignment of personnel. Provide the following:
 1. Access to the Work.
 2. Incidental labor and facilities necessary to facilitate tests and inspections.
3. Adequate quantities of representative samples of materials that require testing and inspection. Assist agency in obtaining samples.
4. Facilities for storage and field curing of test samples.
5. Preliminary design mix proposed for use for material mixes that require control by testing agency.
6. Security and protection for samples and for testing and inspection equipment at Project site.

H. Coordination: Coordinate sequence of activities to accommodate required quality-assurance and quality-control services with a minimum of delay and to avoid necessity of removing and replacing construction to accommodate testing and inspection.
 1. Schedule times for tests, inspections, obtaining samples, and similar activities.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 REPAIR AND PROTECTION

A. General: On completion of testing, inspection, sample taking, and similar services, repair damaged construction and restore substrates and finishes.

B. Protect construction exposed by or for quality-control service activities.

C. Repair and protection are Contractor’s responsibility, regardless of the assignment of responsibility for quality-control services.

END OF SECTION 014000
PART 1 - GENERAL

1.1 DEFINITIONS

A. General: Basic Contract definitions are included in the Conditions of the Contract.

B. "Approved": When used to convey Engineer's action on Contractor's submittals, applications, and requests, "approved" is limited to Engineer's duties and responsibilities as stated in the Conditions of the Contract.

C. "Directed": A command or instruction by Engineer. Other terms including "requested," "authorized," "selected," "required," and "permitted" have the same meaning as "directed."

D. "Indicated": Requirements expressed by graphic representations or in written form on Drawings, in Specifications, and in other Contract Documents. Other terms including "shown," "noted," "scheduled," and "specified" have the same meaning as "indicated."

E. "Regulations": Laws, ordinances, statutes, and lawful orders issued by authorities having jurisdiction, and rules, conventions, and agreements within the construction industry that control performance of the Work.

F. "Furnish": Supply and deliver to Project site, ready for unloading, unpacking, assembly, installation, and similar operations.

G. "Install": Unload, temporarily store, unpack, assemble, erect, place, anchor, apply, work to dimension, finish, cure, protect, clean, and similar operations at Project site.

H. "Provide": Furnish and install, complete and ready for the intended use.

I. "Project Site": Space available for performing construction activities. The extent of Project site is shown on Drawings and may or may not be identical with the description of the land on which Project is to be built.

1.2 INDUSTRY STANDARDS

A. Applicability of Standards: Unless the Contract Documents include more stringent requirements, applicable construction industry standards have the same force and effect as if bound or copied directly into the Contract Documents to the extent referenced. Such standards are made a part of the Contract Documents by reference.

B. Publication Dates: Comply with standards in effect as of date of the Contract Documents unless otherwise indicated.

C. Copies of Standards: Each entity engaged in construction on Project should be familiar with industry standards applicable to its construction activity. Copies of applicable standards are not bound with the Contract Documents.

1. Where copies of standards are needed to perform a required construction activity, obtain copies directly from publication source.
1.3 ABBREVIATIONS AND ACRONYMS

A. Industry Organizations: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities indicated in Gale’s “Encyclopedia of Associations: National Organizations of the U.S.” or in Columbia Books’ “National Trade & Professional Associations of the United States.”

B. Industry Organizations: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities in the following list.
7. ACI - American Concrete Institute; www.concrete.org.
8. ACPA - American Concrete Pipe Association; www.concrete-pipe.org.
9. AEIC - Association of Edison Illuminating Companies, Inc. (The); www.aeic.org.
17. AIA - American Institute of Architects (The); www.aia.org.
25. ARI - Air-Conditioning & Refrigeration Institute; (See AHRI).
26. ARI - American Refrigeration Institute; (See AHRI).
28. ASCE - American Society of Civil Engineers; www.asce.org.
29. ASCE/SEI - American Society of Civil Engineers/Structural Engineering Institute; (See ASCE).
31. ASME - ASME International; (American Society of Mechanical Engineers); www.asme.org.
32. ASSE - American Society of Safety Engineers (The); www.asse.org.
34. ASTM - ASTM International; www.astm.org.
REFERENCES
014200 - 3
92. GS - Green Seal; www.greenseal.org.
94. HI/GAMA - Hydronics Institute/Gas Appliance Manufacturers Association; (See AHRI).
95. HMMA - Hollow Metal Manufacturers Association; (See NAAMM).
100. IAS - International Approval Services; (See CSA).
101. ICBO - International Conference of Building Officials; (See ICC).
103. ICEA - Insulated Cable Engineers Association, Inc.; www.icea.net.
104. ICPA - International Cast Polymer Alliance; www.icpa-hq.org.
105. ICRI - International Concrete Repair Institute, Inc.; www.icri.org.
107. IEEE - Institute of Electrical and Electronics Engineers, Inc. (The); www.ieee.org.
109. IESNA - Illuminating Engineering Society of North America; (See IES).
110. IEST - Institute of Environmental Sciences and Technology; www.iest.org.
111. IGMA - Insulating Glass Manufacturers Alliance; www.igmaonline.org.
114. Intertek - Intertek Group; (Formerly: ETL SEMCO; Intertek Testing Service NA); www.intertek.com.
115. ISA - International Society of Automation (The); (Formerly: Instrumentation, Systems, and Automation Society); www.isa.org.
116. ISAS - Instrumentation, Systems, and Automation Society (The); (See ISA).
117. ISFA - International Surface Fabricators Association; (Formerly: International Solid Surface Fabricators Association); www.isfanow.org.
119. ISSFA - International Solid Surface Fabricators Association; (See ISFA).
120. ITU - International Telecommunication Union; www.itu.int/home.
121. KCMA - Kitchen Cabinet Manufacturers Association; www.kcma.org.
122. LMA - Laminating Materials Association; (See CPA).
125. MCA - Metal Construction Association; www.metalconstruction.org.
134. NACE - NACE International; (National Association of Corrosion Engineers International); www.nace.org.
139. NCAA - National Collegiate Athletic Association (The); www.ncaa.org.
140. NCMA - National Concrete Masonry Association; www.ncma.org.
142. NECA - National Electrical Contractors Association; www.necanet.org.
144. NEMA - National Electrical Manufacturers Association; www.nema.org.
146. NFHS - National Federation of State High School Associations; www.nfhs.org.
148. NFPA - NFPA International; (See NFPA).
151. NLGA - National Lumber Grades Authority; www.nlga.org.
152. NOFMA - National Oak Flooring Manufacturers Association; (See NWFA).
154. NRCA - National Roofing Contractors Association; www.nrca.net.
159. NTMA - National Terrazzo & Mosaic Association, Inc. (The); www.ntma.com.
161. PCI - Precast/Prestressed Concrete Institute; www pci.org.
162. PDI - Plumbing & Drainage Institute; www.pdionline.org.
163. PLASA - PLASA; (Formerly: ESTA - Entertainment Services and Technology Association); http://www.plasa.org.
168. SCTE - Society of Cable Telecommunications Engineers; www.scte.org.
169. SDI - Steel Deck Institute; www.sdi.org.
170. SDI - Steel Door Institute; www.steeldoor.org.
171. SEFA - Scientific Equipment and Furniture Association (The); www.sefalabs.com.
172. SEI/ASCE - Structural Engineering Institute/American Society of Civil Engineers; (See ASCE).
175. SMA - Screen Manufacturers Association; www.smainfo.org.
176. SMACNA - Sheet Metal and Air Conditioning Contractors’ National Association; www.smacna.org.
177. SMPTE - Society of Motion Picture and Television Engineers; www.smpte.org.
178. SPF - Spray Polyurethane Foam Alliance; www.sprayfoam.org.
186. SWPA - Submersible Wastewater Pump Association; www.swpa.org.
187. TCA - Tilt-Up Concrete Association; www.tilt-up.org.
190. TIA - Telecommunications Industry Association (The); (Formerly: TIA/EIA - Telecommunications Industry Association/Electronic Industries Alliance); www.tiaonline.org.
191. TIA/EIA - Telecommunications Industry Association/Electronic Industries Alliance; (See TIA).
194. TPI - Turfgrass Producers International; www.turfgrasssod.org.
197. UNI - Uni-Bell PVC Pipe Association; www.uni-bell.org.
198. USAV - USA Volleyball; www.usavolleyball.org.
201. WA - Wallcoverings Association; www.wallcoverings.org
203. WCLIB - West Coast Lumber Inspection Bureau; www.wclib.org.
204. WCMA - Window Covering Manufacturers Association; www.wcmanet.org.
208. WWPA - Western Wood Products Association; www.wwpa.org.

C. Code Agencies: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities in the following list. This information is believed to be accurate as of the date of the Contract Documents.
 1. DIN - Deutsches Institut fur Normung e.V.; www.din.de.
 2. IAPMO - International Association of Plumbing and Mechanical Officials; www.iapmo.org.

D. Federal Government Agencies: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities in the following list. Information is subject to change and is up to date as of the date of the Contract Documents.
 1. COE - Army Corps of Engineers; www.usace.army.mil.
 3. DOC - Department of Commerce; National Institute of Standards and Technology; www.nist.gov.
 5. DOE - Department of Energy; www.energy.gov.
 6. EPA - Environmental Protection Agency; www.epa.gov.
 7. FAA - Federal Aviation Administration; www.faa.gov.
 11. LBL - Lawrence Berkeley National Laboratory; Environmental Energy Technologies Division; www.eetd.lbl.gov.
 12. OSHA - Occupational Safety & Health Administration; www.osha.gov.
 13. SD - Department of State; www.state.gov.
 15. USDA - Department of Agriculture; Agriculture Research Service; U.S. Salinity Laboratory; www.ars.usda.gov.
 16. USDA - Department of Agriculture; Rural Utilities Service; www.usda.gov.

REFERENCES 014200 - 6
17. USDOJ - Department of Justice; Office of Justice Programs; National Institute of Justice; www.ojp.usdoj.gov.

E. Standards and Regulations: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the standards and regulations in the following list. This information is subject to change and is believed to be accurate as of the date of the Contract Documents.
2. DOD - Department of Defense; Military Specifications and Standards; Available from DLA Document Services; www.quicksearch.dla.mil.
3. DSCC - Defense Supply Center Columbus; (See FS).
4. FED-STD - Federal Standard; (See FS).
6. MILSPEC - Military Specification and Standards; (See DOD).
7. USAB - United States Access Board; www.access-board.gov.
8. USATBCB - U.S. Architectural & Transportation Barriers Compliance Board; (See USAB).

F. State Government Agencies: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities in the following list. This information is subject to change and is believed to be accurate as of the date of the Contract Documents.
1. CBHF; State of California; Department of Consumer Affairs; Bureau of Electronic and Appliance Repair, Home Furnishings and Thermal Insulation; www.bearhfti.ca.gov.
2. CCR; California Code of Regulations; Office of Administrative Law; California Title 24 Energy Code; www.calregs.com.
3. CDHS; California Department of Health Services; (See CDPH).
4. CDPH; California Department of Public Health; Indoor Air Quality Program; www.caliaq.org.
5. CPUC; California Public Utilities Commission; www.cpuc.ca.gov.
6. SCAQMD; South Coast Air Quality Management District; www.aqmd.gov.
7. TFS; Texas A&M Forest Service; Sustainable Forestry and Economic Development; www.txforestservice.tamu.edu.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 014200
SECTION 015000 - TEMPORARY FACILITIES AND CONTROLS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes requirements for temporary utilities, support facilities, and security and protection facilities.

1.2 INFORMATIONAL SUBMITTALS

A. Site Utilization Plan: Show temporary facilities, temporary utility lines and connections, staging areas, construction site entrances, vehicle circulation, and parking areas for construction personnel.

B. Project Identification and Temporary Signs: Show fabrication and installation details, including plans, elevations, details, layouts, typestyles, graphic elements, and message content.

C. Fire-Safety Program: Show compliance with requirements of NFPA 241 and authorities having jurisdiction. Indicate Contractor personnel responsible for management of fire-prevention program.

D. Dust- and HVAC-Control Plan: Submit coordination drawing and narrative that indicates the dust- and HVAC-control measures proposed for use, proposed locations, and proposed time frame for their operation. Include the following:
 1. Locations of dust-control partitions at each phase of work.
 2. HVAC system isolation schematic drawing.
 3. Location of proposed air-filtration system discharge.
 5. Other dust-control measures.

1.3 QUALITY ASSURANCE

A. Electric Service: Comply with NECA, NEMA, and UL standards and regulations for temporary electric service. Install service to comply with NFPA 70.

B. Tests and Inspections: Arrange for authorities having jurisdiction to test and inspect each temporary utility before use. Obtain required certifications and permits.

1.4 PROJECT CONDITIONS

A. Temporary Use of Permanent Facilities: Engage Installer of each permanent service to assume responsibility for operation, maintenance, and protection of each permanent service during its use as a construction facility before Owner's acceptance, regardless of previously assigned responsibilities.

PART 2 - PRODUCTS

2.1 TEMPORARY FACILITIES

A. Field Offices, General: Prefabricated or mobile units with serviceable finishes, temperature controls, and foundations adequate for normal loading.
B. Common-Use Field Office: Of sufficient size to accommodate needs of Owner, Engineer, Construction Manager, and construction personnel office activities and to accommodate Project meetings specified in other Division 01 Sections. Keep office clean and orderly. Furnish and equip offices as follows:
 1. Furniture required for Project-site documents including file cabinets, plan tables, plan racks, and bookcases.
 2. Conference room of sufficient size to accommodate meetings of 10 individuals. Provide electrical power service and 120-V ac duplex receptacles, with no fewer than one receptacle on each wall. Furnish room with conference table, chairs, and 4-foot-square tack and marker boards.
 3. Drinking water and private toilet.
 4. Heating and cooling equipment necessary to maintain a uniform indoor temperature of 68 to 72 deg F.
 5. Lighting fixtures capable of maintaining average illumination of 20 fc at desk height.

2.2 EQUIPMENT

A. Fire Extinguishers: Portable, UL rated; with class and extinguishing agent as required by locations and classes of fire exposures.

B. HVAC Equipment: Unless Owner authorizes use of permanent HVAC system, provide vented, self-contained, liquid-propane-gas or fuel-oil heaters with individual space thermostatic control.
 1. Use of gasoline-burning space heaters, open-flame heaters, or salamander-type heating units is prohibited.
 2. Heating Units: Listed and labeled for type of fuel being consumed, by a qualified testing agency acceptable to authorities having jurisdiction, and marked for intended location and application.
 3. Permanent HVAC System: If Owner authorizes use of permanent HVAC system for temporary use during construction, provide filter with MERV of 8 at each return-air grille in system and remove at end of construction and clean HVAC system as required in Section 017700 "Closeout Procedures."

PART 3 - EXECUTION

3.1 TEMPORARY FACILITIES, GENERAL

A. Conservation: Coordinate construction and use of temporary facilities with consideration given to conservation of energy, water, and materials. Coordinate use of temporary utilities to minimize waste.
 1. Salvage materials and equipment involved in performance of, but not actually incorporated into, the Work. See other Sections for disposition of salvaged materials that are designated as Owner's property.

3.2 INSTALLATION, GENERAL

A. Locate facilities where they will serve Project adequately and result in minimum interference with performance of the Work. Relocate and modify facilities as required by progress of the Work.

B. Provide each facility ready for use when needed to avoid delay. Do not remove until facilities are no longer needed or are replaced by authorized use of completed permanent facilities.

3.3 TEMPORARY UTILITY INSTALLATION

A. General: Install temporary service or connect to existing service.
1. Arrange with utility company, Owner, and existing users for time when service can be interrupted, if necessary, to make connections for temporary services.

B. Isolation of Work Areas in Occupied Facilities: Prevent dust, fumes, and odors from entering occupied areas.

3.4 SUPPORT FACILITIES INSTALLATION

A. General: Comply with the following:
 1. Provide construction for temporary offices, shops, and sheds located within construction area or within 30 feet of building lines that is noncombustible according to ASTM E 136. Comply with NFPA 241.
 2. Maintain support facilities until Engineer schedules Substantial Completion inspection. Remove before Substantial Completion. Personnel remaining after Substantial Completion will be permitted to use permanent facilities, under conditions acceptable to Owner.

B. Parking: Provide temporary parking areas for construction personnel.

C. Project Signs: Provide Project signs as indicated. Unauthorized signs are not permitted.
 1. Identification Signs: Provide Project identification signs as indicated on Drawings.
 2. Temporary Signs: Provide other signs as indicated and as required to inform public and individuals seeking entrance to Project.
 a. Provide temporary, directional signs for construction personnel and visitors.
 3. Maintain and touch up signs so they are legible at all times.

E. Lifts and Hoists: Provide facilities necessary for hoisting materials and personnel.
 1. Truck cranes and similar devices used for hoisting materials are considered "tools and equipment" and not temporary facilities.

3.5 SECURITY AND PROTECTION FACILITIES INSTALLATION

A. Protection of Existing Facilities: Protect existing vegetation, equipment, structures, utilities, and other improvements at Project site and on adjacent properties, except those indicated to be removed or altered. Repair damage to existing facilities.
 1. Where access to adjacent properties is required in order to affect protection of existing facilities, obtain written permission from adjacent property owner to access property for that purpose.

B. Site Enclosure Fence: Before construction operations begin, furnish and install site enclosure fence in a manner that will prevent people from easily entering site except by entrance gates.
 1. Extent of Fence: As required to enclose entire Project site or portion determined sufficient to accommodate construction operations.
 2. Maintain security by limiting number of keys and restricting distribution to authorized personnel. Furnish one set of keys to Owner.

C. Security Enclosure and Lockup: Install temporary enclosure around partially completed areas of construction. Provide lockable entrances to prevent unauthorized entrance, vandalism, theft, and similar violations of security. Lock entrances at end of each workday.
D. Barricades, Warning Signs, and Lights: Comply with requirements of authorities having jurisdiction for erecting structurally adequate barricades, including warning signs and lighting.

E. Temporary Egress: Maintain temporary egress from existing occupied facilities as indicated and as required by authorities having jurisdiction.

F. Temporary Enclosures: Provide temporary enclosures for protection of construction, in progress and completed, from exposure, foul weather, other construction operations, and similar activities. Provide temporary weathertight enclosure for building exterior.
 1. Where heating or cooling is needed and permanent enclosure is incomplete, insulate temporary enclosures.

G. Temporary Fire Protection: Install and maintain temporary fire-protection facilities of types needed to protect against reasonably predictable and controllable fire losses. Comply with NFPA 241; manage fire-prevention program.
 1. Prohibit smoking in construction areas. Comply with additional limits on smoking specified in other Sections.
 2. Supervise welding operations, combustion-type temporary heating units, and similar sources of fire ignition according to requirements of authorities having jurisdiction.
 3. Develop and supervise an overall fire-prevention and protection program for personnel at Project site. Review needs with local fire department and establish procedures to be followed. Instruct personnel in methods and procedures. Post warnings and information.
 4. Provide temporary standpipes and hoses for fire protection. Hang hoses with a warning sign stating that hoses are for fire-protection purposes only and are not to be removed. Match hose size with outlet size and equip with suitable nozzles.

3.6 OPERATION, TERMINATION, AND REMOVAL

A. Supervision: Enforce strict discipline in use of temporary facilities. To minimize waste and abuse, limit availability of temporary facilities to essential and intended uses.

B. Maintenance: Maintain facilities in good operating condition until removal.
 1. Maintain operation of temporary enclosures, heating, cooling, humidity control, ventilation, and similar facilities on a 24-hour basis where required to achieve indicated results and to avoid possibility of damage.

C. Temporary Facility Changeover: Do not change over from using temporary security and protection facilities to permanent facilities until Substantial Completion.

D. Termination and Removal: Remove each temporary facility when need for its service has ended, when it has been replaced by authorized use of a permanent facility, or no later than Substantial Completion. Complete or, if necessary, restore permanent construction that may have been delayed because of interference with temporary facility. Repair damaged Work, clean exposed surfaces, and replace construction that cannot be satisfactorily repaired.
 1. Materials and facilities that constitute temporary facilities are property of Contractor. Owner reserves right to take possession of Project identification signs.
 2. At Substantial Completion, repair, renovate, and clean permanent facilities used during construction period. Comply with final cleaning requirements specified in Section 017700 “Closeout Procedures.”

END OF SECTION 015000
SECTION 016000 - PRODUCT REQUIREMENTS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes administrative and procedural requirements for selection of products for use in Project; product delivery, storage, and handling; manufacturers' standard warranties on products; special warranties; and comparable products.

1.2 DEFINITIONS

A. Products: Items obtained for incorporating into the Work, whether purchased for Project or taken from previously purchased stock. The term "product" includes the terms "material," "equipment," "system," and terms of similar intent.

1. Named Products: Items identified by manufacturer's product name, including make or model number or other designation shown or listed in manufacturer's published product literature that is current as of date of the Contract Documents.

2. New Products: Items that have not previously been incorporated into another project or facility. Products salvaged or recycled from other projects are not considered new products.

3. Comparable Product: Product that is demonstrated and approved by Engineer through submittal process to have the indicated qualities related to type, function, dimension, in-service performance, physical properties, appearance, and other characteristics that equal or exceed those of specified product.

B. Basis-of-Design Product Specification: A specification in which a single manufacturer's product is named and accompanied by the words "basis-of-design product," including make or model number or other designation. In addition to the basis-of-design product description, product attributes and characteristics may be listed to establish the significant qualities related to type, function, in-service performance and physical properties, weight, dimension, durability, visual characteristics, and other special features and requirements for purposes of evaluating comparable products of additional manufacturers named in the specification.

1.3 ACTION SUBMITTALS

A. Comparable Product Request Submittal: Submit request for consideration of each comparable product. Identify basis-of-design product or fabrication or installation method to be replaced. Include Specification Section number and title and Drawing numbers and titles.

1. Include data to indicate compliance with the requirements specified in "Comparable Products" Article.

2. Engineer's Action: If necessary, Engineer will request additional information or documentation for evaluation within seven days of receipt of a comparable product request. Engineer will notify Contractor through Construction Manager of approval or rejection of proposed comparable product request within 15 days of receipt of request, or seven days of receipt of additional information or documentation, whichever is later.

a. Form of Engineer's Approval of Submittal: As specified in Section 013300 "Submittal Procedures."

b. Use product specified if Engineer does not issue a decision on use of a comparable product request within time allocated.

1.4 QUALITY ASSURANCE

A. Compatibility of Options: If Contractor is given option of selecting between two or more products for use on Project, select product compatible with products previously selected, even if previously selected products were also options.

1.5 PRODUCT DELIVERY, STORAGE, AND HANDLING

A. Deliver, store, and handle products using means and methods that will prevent damage, deterioration, and loss, including theft and vandalism. Comply with manufacturer's written instructions.

B. Delivery and Handling:
 1. Schedule delivery to minimize long-term storage at Project site and to prevent overcrowding of construction spaces.
 2. Coordinate delivery with installation time to ensure minimum holding time for items that are flammable, hazardous, easily damaged, or sensitive to deterioration, theft, and other losses.
 3. Deliver products to Project site in an undamaged condition in manufacturer's original sealed container or other packaging system, complete with labels and instructions for handling, storing, unpacking, protecting, and installing.
 4. Inspect products on delivery to determine compliance with the Contract Documents and to determine that products are undamaged and properly protected.

C. Storage:
 1. Store products to allow for inspection and measurement of quantity or counting of units.
 2. Store materials in a manner that will not endanger Project structure.
 3. Store products that are subject to damage by the elements, under cover in a weathertight enclosure above ground, with ventilation adequate to prevent condensation.
 4. Protect foam plastic from exposure to sunlight, except to extent necessary for period of installation and concealment.
 5. Comply with product manufacturer's written instructions for temperature, humidity, ventilation, and weather-protection requirements for storage.
 6. Protect stored products from damage and liquids from freezing.

1.6 PRODUCT WARRANTIES

A. Warranties specified in other Sections shall be in addition to, and run concurrent with, other warranties required by the Contract Documents. Manufacturer's disclaimers and limitations on product warranties do not relieve Contractor of obligations under requirements of the Contract Documents.

 1. Manufacturer's Warranty: Written warranty furnished by individual manufacturer for a particular product and specifically endorsed by manufacturer to Owner.
 2. Special Warranty: Written warranty required by the Contract Documents to provide specific rights for Owner.

B. Special Warranties: Prepare a written document that contains appropriate terms and identification, ready for execution.

 1. Manufacturer's Standard Form: Modified to include Project-specific information and properly executed.
 2. Specified Form: When specified forms are included with the Specifications, prepare a written document using indicated form properly executed.
 3. See other Sections for specific content requirements and particular requirements for submitting special warranties.
PART 2 - PRODUCTS

2.1 PRODUCT SELECTION PROCEDURES

A. General Product Requirements: Provide products that comply with the Contract Documents, are undamaged and, unless otherwise indicated, are new at time of installation.
 1. Provide products complete with accessories, trim, finish, fasteners, and other items needed for a complete installation and indicated use and effect.
 2. Standard Products: If available, and unless custom products or nonstandard options are specified, provide standard products of types that have been produced and used successfully in similar situations on other projects.
 3. Owner reserves the right to limit selection to products with warranties meeting requirements of the Contract Documents.
 4. Where products are accompanied by the term "as selected," Engineer will make selection.

B. Product Selection Procedures:
 1. Sole Product: Where Specifications name a single manufacturer and product, provide the named product that complies with requirements. Comparable products or substitutions for Contractor's convenience will not be considered.
 a. Sole product may be indicated by the phrase: "Subject to compliance with requirements, provide the following: …"
 2. Sole Manufacturer/Source: Where Specifications name a single manufacturer or source, provide a product by the named manufacturer or source that complies with requirements. Comparable products or substitutions for Contractor's convenience will not be considered.
 a. Sole manufacturer/source may be indicated by the phrase: "Subject to compliance with requirements, provide products by the following: …"
 3. Limited List of Products: Where Specifications include a list of names of both manufacturers and products, provide one of the products listed that complies with requirements. Comparable products or substitutions for Contractor's convenience [will not] be considered unless otherwise indicated.
 a. Limited list of products may be indicated by the phrase: "Subject to compliance with requirements, provide one of the following: …"
 4. Non-Limited List of Products: Where Specifications include a list of names of both available manufacturers and products, provide one of the products listed, or an unnamed product, which complies with requirements.
 a. Non-limited list of products is indicated by the phrase: "Subject to compliance with requirements, available products that may be incorporated in the Work include, but are not limited to, the following: …"
 5. Limited List of Manufacturers: Where Specifications include a list of manufacturers' names, provide a product by one of the manufacturers listed that complies with requirements. Comparable products or substitutions for Contractor's convenience [will not] be considered unless otherwise indicated.
 a. Limited list of manufacturers is indicated by the phrase: "Subject to compliance with requirements, provide products by one of the following: …"
 6. Non-Limited List of Manufacturers: Where Specifications include a list of available manufacturers, provide a product by one of the manufacturers listed, or a product by an unnamed manufacturer, which complies with requirements.
 a. Non-limited list of manufacturers is indicated by the phrase: "Subject to compliance with requirements, available manufacturers whose products may be incorporated in the Work include, but are not limited to, the following: …"
7. Basis-of-Design Product: Where Specifications name a product, or refer to a product indicated on Drawings, and include a list of manufacturers, provide the specified or indicated product or a comparable product by one of the other named manufacturers. Drawings and Specifications indicate sizes, profiles, dimensions, and other characteristics that are based on the product named. Comply with requirements in "Comparable Products" Article for consideration of an unnamed product by one of the other named manufacturers.
 a. For approval of products by unnamed manufacturers, comply with requirements in Section 012500 "Substitution Procedures" for substitutions for convenience.

C. Visual Matching Specification: Where Specifications require "match Engineer's sample," provide a product that complies with requirements and matches Engineer's sample. Engineer's decision will be final on whether a proposed product matches.
 1. If no product available within specified category matches and complies with other specified requirements, comply with requirements in Section 012500 "Substitution Procedures" for proposal of product.

D. Visual Selection Specification: Where Specifications include the phrase "as selected by Engineer from manufacturer's full range" or similar phrase, select a product that complies with requirements. Engineer will select color, gloss, pattern, density, or texture from manufacturer's product line that includes both standard and premium items.

2.2 COMPARABLE PRODUCTS

A. Conditions for Consideration of Comparable Products: Engineer will consider Contractor's request for comparable product when the following conditions are satisfied. If the following conditions are not satisfied, Engineer may return requests without action, except to record noncompliance with these requirements:
 1. Evidence that proposed product does not require revisions to the Contract Documents, is consistent with the Contract Documents, will produce the indicated results, and is compatible with other portions of the Work. Detailed comparison of significant qualities of proposed product with those named in the Specifications. Significant product qualities include attributes such as type, function, in-service performance and physical properties, weight, dimension, durability, visual characteristics, and other specific features and requirements.
 2. Evidence that proposed product provides specified warranty.
 3. List of similar installations for completed projects with project names and addresses and names and addresses of engineers and owners, if requested.
 4. Samples, if requested.

PART 3 - EXECUTION (Not Used)

END OF SECTION 016000
SECTION 017300 - EXECUTION

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes general administrative and procedural requirements governing execution of the Work including, but not limited to, the following:
 2. Field engineering and surveying.
 3. Installation of the Work.
 4. Cutting and patching.
 5. Progress cleaning.
 6. Starting and adjusting.
 7. Protection of installed construction.

1.2 QUALITY ASSURANCE

A. Cutting and Patching: Comply with requirements for and limitations on cutting and patching of construction elements.
 1. Structural Elements: When cutting and patching structural elements, notify Engineer of locations and details of cutting and await directions from Engineer before proceeding. Shore, brace, and support structural elements during cutting and patching. Do not cut and patch structural elements in a manner that could change their load-carrying capacity or increase deflection.
 2. Operational Elements: Do not cut and patch operating elements and related components in a manner that results in reducing their capacity to perform as intended or that results in increased maintenance or decreased operational life or safety.
 3. Other Construction Elements: Do not cut and patch other construction elements or components in a manner that could change their load-carrying capacity, that results in reducing their capacity to perform as intended, or that results in increased maintenance or decreased operational life or safety.
 4. Visual Elements: Do not cut and patch construction in a manner that results in visual evidence of cutting and patching. Do not cut and patch exposed construction in a manner that would, in Engineer's opinion, reduce the building's aesthetic qualities. Remove and replace construction that has been cut and patched in a visually unsatisfactory manner.

B. Manufacturer's Installation Instructions: Obtain and maintain on-site manufacturer's written recommendations and instructions for installation of products and equipment.

PART 2 - PRODUCTS

2.1 MATERIALS

A. General: Comply with requirements specified in other Sections.
 1. For projects requiring compliance with sustainable design and construction practices and procedures, use products for patching that comply with sustainable design requirements.

B. In-Place Materials: Use materials for patching identical to in-place materials. For exposed surfaces, use materials that visually match in-place adjacent surfaces to the fullest extent possible.
 1. If identical materials are unavailable or cannot be used, use materials that, when installed, will provide a match acceptable to Engineer for the visual and functional performance of in-place materials.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Existing Conditions: The existence and location of underground and other utilities and construction indicated as existing are not guaranteed. Before beginning sitework, investigate and verify the existence and location of underground utilities, mechanical and electrical systems, and other construction affecting the Work.

1. Before construction, verify the location and invert elevation at points of connection of sanitary sewer, storm sewer, and water-service piping; underground electrical services; and other utilities.

2. Furnish location data for work related to Project that must be performed by public utilities serving Project site.

B. Examination and Acceptance of Conditions: Before proceeding with each component of the Work, examine substrates, areas, and conditions, with Installer or Applicator present where indicated, for compliance with requirements for installation tolerances and other conditions affecting performance. Record observations.

1. Examine roughing-in for mechanical and electrical systems to verify actual locations of connections before equipment and fixture installation.

2. Examine walls, floors, and roofs for suitable conditions where products and systems are to be installed.

3. Verify compatibility with and suitability of substrates, including compatibility with existing finishes or primers.

C. Proceed with installation only after unsatisfactory conditions have been corrected. Proceeding with the Work indicates acceptance of surfaces and conditions.

3.2 PREPARATION

A. Existing Utility Information: Furnish information to [local utility] [Owner] that is necessary to adjust, move, or relocate existing utility structures, utility poles, lines, services, or other utility appurtenances located in or affected by construction. Coordinate with authorities having jurisdiction.

B. Field Measurements: Take field measurements as required to fit the Work properly. Recheck measurements before installing each product. Where portions of the Work are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication. Coordinate fabrication schedule with construction progress to avoid delaying the Work.

C. Space Requirements: Verify space requirements and dimensions of items shown diagrammatically on Drawings.

D. Review of Contract Documents and Field Conditions: Immediately on discovery of the need for clarification of the Contract Documents caused by differing field conditions outside the control of Contractor, submit a request for information to Engineer according to requirements in Section 013100 "Project Management and Coordination."

3.3 CONSTRUCTION LAYOUT

A. Verification: Before proceeding to lay out the Work, verify layout information shown on Drawings, in relation to the property survey and existing benchmarks. If discrepancies are discovered, notify Engineer and Construction Manager promptly.
B. Record Log: Maintain a log of layout control work. Record deviations from required lines and levels. Include beginning and ending dates and times of surveys, weather conditions, name and duty of each survey party member, and types of instruments and tapes used. Make the log available for reference by Engineer and Construction Manager.

3.4 FIELD ENGINEERING

A. Identification: Owner will identify existing benchmarks, control points, and property corners.

B. Reference Points: Locate existing permanent benchmarks, control points, and similar reference points before beginning the Work. Preserve and protect permanent benchmarks and control points during construction operations.

C. Benchmarks: Establish and maintain a minimum of two permanent benchmarks on Project site, referenced to data established by survey control points. Comply with authorities having jurisdiction for type and size of benchmark.
 1. Record benchmark locations, with horizontal and vertical data, on Project Record Documents.

3.5 INSTALLATION

A. General: Locate the Work and components of the Work accurately, in correct alignment and elevation, as indicated.
 1. Make vertical work plumb and make horizontal work level.
 2. Where space is limited, install components to maximize space available for maintenance and ease of removal for replacement.
 3. Conceal pipes, ducts, and wiring in finished areas unless otherwise indicated.

B. Comply with manufacturer's written instructions and recommendations for installing products in applications indicated.

C. Install products at the time and under conditions that will ensure the best possible results. Maintain conditions required for product performance until Substantial Completion.

D. Conduct construction operations so no part of the Work is subjected to damaging operations or loading in excess of that expected during normal conditions of occupancy.

E. Sequence the Work and allow adequate clearances to accommodate movement of construction items on site and placement in permanent locations.

F. Tools and Equipment: Where possible, select tools or equipment that minimize production of excessive noise levels.

G. Templates: Obtain and distribute to the parties involved templates for work specified to be factory prepared and field installed. Check Shop Drawings of other portions of the Work to confirm that adequate provisions are made for locating and installing products to comply with indicated requirements.

H. Attachment: Provide blocking and attachment plates and anchors and fasteners of adequate size and number to securely anchor each component in place, accurately located and aligned with other portions of the Work. Where size and type of attachments are not indicated, verify size and type required for load conditions.
 1. Mounting Heights: Where mounting heights are not indicated, mount components at heights directed by Engineer.
2. Allow for building movement, including thermal expansion and contraction.
3. Coordinate installation of anchorages. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors, that are to be embedded in concrete or masonry. Deliver such items to Project site in time for installation.

I. Joints: Make joints of uniform width. Where joint locations in exposed work are not indicated, arrange joints for the best visual effect. Fit exposed connections together to form hairline joints.

J. Remove and replace damaged, defective, or non-conforming Work.

3.6 CUTTING AND PATCHING

A. Cutting and Patching, General: Employ skilled workers to perform cutting and patching. Proceed with cutting and patching at the earliest feasible time, and complete without delay.
 1. Cut in-place construction to provide for installation of other components or performance of other construction, and subsequently patch as required to restore surfaces to their original condition.

B. Existing Warranties: Remove, replace, patch, and repair materials and surfaces cut or damaged during installation or cutting and patching operations, by methods and with materials so as not to void existing warranties.

C. Temporary Support: Provide temporary support of work to be cut.

D. Protection: Protect in-place construction during cutting and patching to prevent damage. Provide protection from adverse weather conditions for portions of Project that might be exposed during cutting and patching operations.

E. Adjacent Occupied Areas: Where interference with use of adjoining areas or interruption of free passage to adjoining areas is unavoidable, coordinate cutting and patching according to requirements in Section 011000 "Summary."

F. Existing Utility Services and Mechanical/Electrical Systems: Where existing services/systems are required to be removed, relocated, or abandoned, bypass such services/systems before cutting to minimize interruption to occupied areas.

G. Cutting: Cut in-place construction by sawing, drilling, breaking, chipping, grinding, and similar operations, including excavation, using methods least likely to damage elements retained or adjoining construction. If possible, review proposed procedures with original Installer; comply with original Installer's written recommendations.
 1. In general, use hand or small power tools designed for sawing and grinding, not hammering and chopping. Cut holes and slots neatly to minimum size required, and with minimum disturbance of adjacent surfaces. Temporarily cover openings when not in use.
 2. Finished Surfaces: Cut or drill from the exposed or finished side into concealed surfaces.
 3. Concrete and Masonry: Cut using a cutting machine, such as an abrasive saw or a diamond-core drill.
 4. Mechanical and Electrical Services: Cut off pipe or conduit in walls or partitions to be removed. Cap, valve, or plug and seal remaining portion of pipe or conduit to prevent entrance of moisture or other foreign matter after cutting.
 5. Proceed with patching after construction operations requiring cutting are complete.

H. Patching: Patch construction by filling, repairing, refinishing, closing up, and similar operations following performance of other work. Patch with durable seams that are as invisible as
practicable. Provide materials and comply with installation requirements specified in other Sections, where applicable.

1. Inspection: Where feasible, test and inspect patched areas after completion to demonstrate physical integrity of installation.

2. Exposed Finishes: Restore exposed finishes of patched areas and extend finish restoration into retained adjoining construction in a manner that will minimize evidence of patching and refinishing.

3. Floors and Walls: Where walls or partitions that are removed extend one finished area into another, patch and repair floor and wall surfaces in the new space. Provide an even surface of uniform finish, color, texture, and appearance. Remove in-place floor and wall coverings and replace with new materials, if necessary, to achieve uniform color and appearance.

4. Ceilings: Patch, repair, or rehang in-place ceilings as necessary to provide an even-plane surface of uniform appearance.

5. Exterior Building Enclosure: Patch components in a manner that restores enclosure to a weathertight condition and ensures thermal and moisture integrity of building enclosure.

I. Cleaning: Clean areas and spaces where cutting and patching are performed. Remove paint, mortar, oils, putty, and similar materials from adjacent finished surfaces.

3.7 PROGRESS CLEANING

A. General: Clean Project site and work areas daily, including common areas. Enforce requirements strictly. Dispose of materials lawfully.

2. Do not hold waste materials more than seven days during normal weather or three days if the temperature is expected to rise above 80 deg F.

3. Containerize hazardous and unsanitary waste materials separately from other waste. Mark containers appropriately and dispose of legally, according to regulations.

a. Use containers intended for holding waste materials of type to be stored.

4. Coordinate progress cleaning for joint-use areas where Contractor and other contractors are working concurrently.

B. Site: Maintain Project site free of waste materials and debris.

C. Work Areas: Clean areas where work is in progress to the level of cleanliness necessary for proper execution of the Work.

1. Remove liquid spills promptly.

2. Where dust would impair proper execution of the Work, broom-clean or vacuum the entire work area, as appropriate.

D. Installed Work: Keep installed work clean. Clean installed surfaces according to written instructions of manufacturer or fabricator of product installed, using only cleaning materials specifically recommended. If specific cleaning materials are not recommended, use cleaning materials that are not hazardous to health or property and that will not damage exposed surfaces.

E. Concealed Spaces: Remove debris from concealed spaces before enclosing the space.

F. Exposed Surfaces in Finished Areas: Clean exposed surfaces and protect as necessary to ensure freedom from damage and deterioration at time of Substantial Completion.

G. Waste Disposal: Do not bury or burn waste materials on-site. Do not wash waste materials down sewers or into waterways.
H. During handling and installation, clean and protect construction in progress and adjoining materials already in place. Apply protective covering where required to ensure protection from damage or deterioration at Substantial Completion.

I. Clean and provide maintenance on completed construction as frequently as necessary through the remainder of the construction period. Adjust and lubricate operable components to ensure operability without damaging effects.

J. Limiting Exposures: Supervise construction operations to ensure that no part of the construction, completed or in progress, is subject to harmful, dangerous, damaging, or otherwise deleterious exposure during the construction period.

3.8 STARTING AND ADJUSTING

A. Start equipment and operating components to confirm proper operation. Remove malfunctioning units, replace with new units, and retest.

B. Adjust equipment for proper operation. Adjust operating components for proper operation without binding.

C. Test each piece of equipment to verify proper operation. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. Manufacturer's Field Service: Comply with qualification requirements in Section 014000 “Quality Requirements.”

3.9 PROTECTION OF INSTALLED CONSTRUCTION

A. Provide final protection and maintain conditions that ensure installed Work is without damage or deterioration at time of Substantial Completion.

B. Protection of Existing Items: Provide protection and ensure that existing items to remain undisturbed by construction are maintained in condition that existed at commencement of the Work.

C. Comply with manufacturer's written instructions for temperature and relative humidity.

END OF SECTION 017300
SECTION 017700 - CLOSEOUT PROCEDURES

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes administrative and procedural requirements for contract closeout, including, but not limited to, the following:
 1. Substantial Completion procedures.
 2. Final completion procedures.
 3. Warranties.
 4. Final cleaning.
 5. Repair of the Work.

B. Related Requirements:
 1. Section 017823 "Operation and Maintenance Data" for additional operation and maintenance manual requirements.
 2. Section 017839 "Project Record Documents" for submitting Record Drawings, Record Specifications, and Record Product Data.
 3. Section 017900 "Demonstration and Training" for requirements to train the Owner's maintenance personnel to adjust, operate, and maintain products, equipment, and systems.

1.2 ACTION SUBMITTALS
A. Product Data: For each type of cleaning agent.

B. Contractor's List of Incomplete Items: Initial submittal at Substantial Completion.

C. Certified List of Incomplete Items: Final submittal at final completion.

1.3 CLOSEOUT SUBMITTALS
A. Certificates of Release: From authorities having jurisdiction.

B. Certificate of Insurance: For continuing coverage.

C. Field Report: For pest control inspection.

1.4 SUBSTANTIAL COMPLETION PROCEDURES
A. Contractor's List of Incomplete Items: Prepare and submit a list of items to be completed and corrected (Contractor's punch list), indicating the value of each item on the list and reasons why the Work is incomplete.

B. Submittals Prior to Substantial Completion: Complete the following a minimum of 10 days prior to requesting inspection for determining date of Substantial Completion. List items below that are incomplete at time of request.
 1. Certificates of Release: Obtain and submit releases from authorities having jurisdiction permitting Owner unrestricted use of the Work and access to services and utilities. Include occupancy permits, operating certificates, and similar releases.
2. Submit closeout submittals specified in other Division 01 Sections, including project record documents, operation and maintenance manuals, damage or settlement surveys, property surveys, and similar final record information.
3. Submit closeout submittals specified in individual Sections, including specific warranties, workmanship bonds, maintenance service agreements, final certifications, and similar documents.
4. Submit maintenance material submittals specified in individual Sections, including tools, spare parts, extra materials, and similar items, and deliver to location designated by Engineer. Label with manufacturer's name and model number.
5. Submit testing, adjusting, and balancing records.
6. Submit sustainable design submittals not previously submitted.
7. Submit changeover information related to Owner's occupancy, use, operation, and maintenance.

C. Procedures Prior to Substantial Completion: Complete the following a minimum of 10 days prior to requesting inspection for determining date of Substantial Completion. List items below that are incomplete at time of request.
1. Advise Owner of pending insurance changeover requirements.
2. Make final changeover of permanent locks and deliver keys to Owner. Advise Owner's personnel of changeover in security provisions.
3. Complete startup and testing of systems and equipment.
4. Perform preventive maintenance on equipment used prior to Substantial Completion.
5. Instruct Owner's personnel in operation, adjustment, and maintenance of products, equipment, and systems. Submit demonstration and training video recordings specified in Section 017900 "Demonstration and Training."
6. Advise Owner of changeover in utility services.
7. Participate with Owner in conducting inspection and walkthrough with local emergency responders.
8. Terminate and remove temporary facilities from Project site, along with mockups, construction tools, and similar elements.
9. Complete final cleaning requirements.
10. Touch up paint and otherwise repair and restore marred exposed finishes to eliminate visual defects.

D. Inspection: Submit a written request for inspection to determine Substantial Completion a minimum of 10 days prior to date the Work will be completed and ready for final inspection and tests. On receipt of request, Engineer and Construction Manager will either proceed with inspection or notify Contractor of unfulfilled requirements. Engineer will prepare the Certificate of Substantial Completion after inspection or will notify Contractor of items, either on Contractor's list or additional items identified by Engineer, that must be completed or corrected before certificate will be issued.

1.5 FINAL COMPLETION PROCEDURES

A. Submittals Prior to Final Completion: Before requesting final inspection for determining final completion, complete the following:
1. Submit a final Application for Payment according to Section 012900 "Payment Procedures."
2. Certified List of Incomplete Items: Submit certified copy of Engineer's Substantial Completion inspection list of items to be completed or corrected (punch list), endorsed and dated by Engineer. Certified copy of the list shall state that each item has been completed or otherwise resolved for acceptance.
3. Certificate of Insurance: Submit evidence of final, continuing insurance coverage complying with insurance requirements.
4. Submit pest-control final inspection report.
B. Inspection: Submit a written request for final inspection to determine acceptance a minimum of 10 days prior to date the work will be completed and ready for final inspection and tests. On receipt of request, Engineer and Construction Manager will either proceed with inspection or notify Contractor of unfulfilled requirements. Engineer will prepare a final Certificate for Payment after inspection or will notify Contractor of construction that must be completed or corrected before certificate will be issued.

1.6 LIST OF INCOMPLETE ITEMS (PUNCH LIST)

A. Organization of List: Include name and identification of each space and area affected by construction operations for incomplete items and items needing correction including, if necessary, areas disturbed by Contractor that are outside the limits of construction.
 1. Organize items applying to each space by major element, including categories for ceiling, individual walls, floors, equipment, and building systems.
 2. Submit list of incomplete items in the following format:
 a. MS Excel electronic file. Engineer, through Construction Manager, will return annotated file.
 b. PDF electronic file. Engineer, through Construction Manager, will return annotated file.
 c. Three paper copies. Engineer, through Construction Manager, will return two copies.

1.7 SUBMITTAL OF PROJECT WARRANTIES

A. Time of Submittal: Submit written warranties on request of Engineer for designated portions of the Work where warranties are indicated to commence on dates other than date of Substantial Completion, or when delay in submittal of warranties might limit Owner’s rights under warranty.

B. Organize warranty documents into an orderly sequence based on the table of contents of Project Manual.

C. Warranty Electronic File: Provide warranties and bonds in PDF format. Assemble complete warranty and bond submittal package into a single electronic PDF file with bookmarks enabling navigation to each item. Provide bookmarked table of contents at beginning of document.
 1. Submit by email to Engineer.

D. Warranties in Paper Form:
 1. Bind warranties and bonds in heavy-duty, three-ring, vinyl-covered, loose-leaf binders, thickness as necessary to accommodate contents, and sized to receive 8-1/2-by-11-inch paper.

E. Provide additional copies of each warranty to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Cleaning Agents: Use cleaning materials and agents recommended by manufacturer or fabricator of the surface to be cleaned. Do not use cleaning agents that are potentially hazardous to health or property or that might damage finished surfaces.
PART 3 - EXECUTION

3.1 FINAL CLEANING

A. General: Perform final cleaning. Conduct cleaning and waste-removal operations to comply with local laws and ordinances and Federal and local environmental and antipollution regulations.

B. Cleaning: Employ experienced workers or professional cleaners for final cleaning. Clean each surface or unit to condition expected in an average commercial building cleaning and maintenance program. Comply with manufacturer's written instructions.
 1. Complete the following cleaning operations before requesting inspection for certification of Substantial Completion for entire Project or for a designated portion of Project:
 a. Clean Project site, yard, and grounds, in areas disturbed by construction activities, including landscape development areas, of rubbish, waste material, litter, and other foreign substances.
 b. Clean exposed exterior and interior hard-surfaced finishes to a dirt-free condition, free of stains, films, and similar foreign substances. Avoid disturbing natural weathering of exterior surfaces. Restore reflective surfaces to their original condition.
 c. Remove debris and surface dust from limited access spaces, including roofs, plenums, shafts, trenches, equipment vaults, manholes, attics, and similar spaces.
 d. Sweep concrete floors broom clean in unoccupied spaces.
 e. Vacuum carpet and similar soft surfaces, removing debris and excess nap; clean according to manufacturer's recommendations if visible soil or stains remain.
 f. Clean plumbing fixtures to a sanitary condition, free of stains, including stains resulting from water exposure.
 g. Replace disposable air filters and clean permanent air filters. Clean exposed surfaces of diffusers, registers, and grills.
 h. Clean light fixtures, lamps, globes, and reflectors to function with full efficiency.
 i. Leave Project clean and ready for occupancy.

3.2 REPAIR OF THE WORK

A. Complete repair and restoration operations, before requesting inspection for determination of Substantial Completion.

B. Repair, or remove and replace, defective construction. Repairing includes replacing defective parts, refinishing damaged surfaces, touching up with matching materials, and properly adjusting operating equipment. Where damaged or worn items cannot be repaired or restored, provide replacements. Remove and replace operating components that cannot be repaired. Restore damaged construction and permanent facilities used during construction to specified condition.

END OF SECTION 017700
SECTION 017823 - OPERATION AND MAINTENANCE DATA

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes administrative and procedural requirements for preparing operation and maintenance manuals, including the following:
 1. Operation and maintenance documentation directory manuals.
 2. Emergency manuals.
 3. Systems and equipment operation manuals.
 4. Systems and equipment maintenance manuals.
 5. Product maintenance manuals.

1.2 CLOSEOUT SUBMITTALS

A. Submit operation and maintenance manuals indicated. Provide content for each manual as specified in individual Specification Sections, and as reviewed and approved at the time of Section submittals. Submit reviewed manual content formatted and organized as required by this Section.
 1. Engineer and Commissioning Authority will comment on whether content of operation and maintenance submittals is acceptable.
 2. Where applicable, clarify and update reviewed manual content to correspond to revisions and field conditions.

B. Format: Submit operation and maintenance manuals in the following format:
 1. Submit by email to Engineer. Enable reviewer comments on draft submittals.
 2. Submit three paper copies. Engineer, through Construction Manager, will return two copies.

C. Final Manual Submittal: Submit each manual in final form prior to requesting inspection for Substantial Completion and at least 15 days before commencing demonstration and training. Engineer and Commissioning Authority will return copy with comments.
 1. Correct or revise each manual to comply with Engineer’s and Commissioning Authority's comments. Submit copies of each corrected manual within 15 days of receipt of Engineer’s and Commissioning Authority’s comments and prior to commencing demonstration and training.

1.3 FORMAT OF OPERATION AND MAINTENANCE MANUALS

A. Manuals, Electronic Files: Submit manuals in the form of a multiple file composite electronic PDF file for each manual type required.
 1. Electronic Files: Use electronic files prepared by manufacturer where available. Where scanning of paper documents is required, configure scanned file for minimum readable file size.
 2. File Names and Bookmarks: Bookmark individual documents based on file names. Name document files to correspond to system, subsystem, and equipment names used in manual directory and table of contents. Group documents for each system and subsystem into individual composite bookmarked files, then create composite manual, so that resulting bookmarks reflect the system, subsystem, and equipment names in a readily navigated file tree. Configure electronic manual to display bookmark panel on opening file.

B. Manuals, Paper Copy: Submit manuals in the form of hard-copy, bound and labeled volumes.
1. Binders: Heavy-duty, three-ring, vinyl-covered, loose-leaf binders, in thickness necessary to accommodate contents, sized to hold 8-1/2-by-11-inch paper; with clear plastic sleeve on spine to hold label describing contents and with pockets inside covers to hold folded oversize sheets.

2. Drawings: Attach reinforced, punched binder tabs on drawings and bind with text.
 a. If oversize drawings are necessary, fold drawings to same size as text pages and use as foldouts.
 b. If drawings are too large to be used as foldouts, fold and place drawings in labeled envelopes and bind envelopes in rear of manual. At appropriate locations in manual, insert typewritten pages indicating drawing titles, descriptions of contents, and drawing locations.

1.4 REQUIREMENTS FOR EMERGENCY, OPERATION, AND MAINTENANCE MANUALS

A. Organization of Manuals: Unless otherwise indicated, organize each manual into a separate section for each system and subsystem, and a separate section for each piece of equipment not part of a system. Each manual shall contain the following materials, in the order listed:
 1. Title page.
 2. Table of contents.

B. Title Page: Include the following information:
 1. Subject matter included in manual.
 2. Name and address of Project.
 3. Name and address of Owner.
 4. Date of submittal.
 5. Name and contact information for Contractor.
 6. Name and contact information for Construction Manager.
 7. Name and contact information for Engineer.
 8. Name and contact information for Commissioning Authority.
 9. Names and contact information for major consultants to the Engineer that designed the systems contained in the manuals.
 10. Cross-reference to related systems in other operation and maintenance manuals.

C. Table of Contents: List each product included in manual, identified by product name, indexed to the content of the volume, and cross-referenced to Specification Section number in Project Manual.

D. Manual Contents: Organize into sets of manageable size. Arrange contents alphabetically by system, subsystem, and equipment. If possible, assemble instructions for subsystems, equipment, and components of one system into a single binder.

E. Identification: In the documentation directory and in each operation and maintenance manual, identify each system, subsystem, and piece of equipment with same designation used in the Contract Documents. If no designation exists, assign a designation according to ASHRAE Guideline 4, "Preparation of Operating and Maintenance Documentation for Building Systems."

1.5 EMERGENCY MANUALS

A. Emergency Manual: Assemble a complete set of emergency information indicating procedures for use by emergency personnel and by Owner's operating personnel for types of emergencies indicated.

B. Content: Organize manual into a separate section for each of the following:
1. Type of emergency.
2. Emergency instructions.
3. Emergency procedures.

C. Type of Emergency: Where applicable for each type of emergency indicated below, include instructions and procedures for each system, subsystem, piece of equipment, and component:
 1. Fire.
 2. Flood.
 5. Power failure.
 7. System, subsystem, or equipment failure.
 8. Chemical release or spill.

D. Emergency Instructions: Describe and explain warnings, trouble indications, error messages, and similar codes and signals. Include responsibilities of Owner's operating personnel for notification of Installer, supplier, and manufacturer to maintain warranties.

E. Emergency Procedures: Include the following, as applicable:
 1. Instructions on stopping.
 2. Shutdown instructions for each type of emergency.
 3. Operating instructions for conditions outside normal operating limits.
 4. Required sequences for electric or electronic systems.
 5. Special operating instructions and procedures.

1.6 SYSTEMS AND EQUIPMENT OPERATION MANUALS

A. Systems and Equipment Operation Manual: Assemble a complete set of data indicating operation of each system, subsystem, and piece of equipment not part of a system. Include information required for daily operation and management, operating standards, and routine and special operating procedures.

B. Content: In addition to requirements in this Section, include operation data required in individual Specification Sections and the following information:
 2. Performance and design criteria if Contractor has delegated design responsibility.
 3. Operating standards.
 4. Operating procedures.
 5. Operating logs.
 6. Wiring diagrams.
 7. Control diagrams.
 8. Piped system diagrams.
 9. Precautions against improper use.
 10. License requirements including inspection and renewal dates.

C. Descriptions: Include the following:
 1. Product name and model number. Use designations for products indicated on Contract Documents.
 2. Manufacturer's name.
 3. Equipment identification with serial number of each component.
 4. Equipment function.
 5. Operating characteristics.
 6. Limiting conditions.
OPERATION AND MAINTENANCE DATA 017823 - 4

7. Performance curves.
8. Engineering data and tests.
9. Complete nomenclature and number of replacement parts.

D. Operating Procedures: Include the following, as applicable:
 1. Startup procedures.
 2. Equipment or system break-in procedures.
 3. Routine and normal operating instructions.
 4. Regulation and control procedures.
 5. Instructions on stopping.
 7. Seasonal and weekend operating instructions.
 8. Required sequences for electric or electronic systems.
 9. Special operating instructions and procedures.

E. Systems and Equipment Controls: Describe the sequence of operation, and diagram controls as installed.

F. Piped Systems: Diagram piping as installed, and identify color coding where required for identification.

1.7 SYSTEMS AND EQUIPMENT MAINTENANCE MANUALS

A. Systems and Equipment Maintenance Manuals: Assemble a complete set of data indicating maintenance of each system, subsystem, and piece of equipment not part of a system. Include manufacturers' maintenance documentation, preventive maintenance procedures and frequency, repair procedures, wiring and systems diagrams, lists of spare parts, and warranty information.

B. Content: For each system, subsystem, and piece of equipment not part of a system, include source information, manufacturers' maintenance documentation, maintenance procedures, maintenance and service schedules, spare parts list and source information, maintenance service contracts, and warranties and bonds, as described below.

C. Manufacturers' Maintenance Documentation: Include the following information for each component part or piece of equipment:
 1. Standard maintenance instructions and bulletins; include only sheets pertinent to product or component installed. Mark each sheet to identify each product or component incorporated into the Work. If data include more than one item in a tabular format, identify each item using appropriate references from the Contract Documents. Identify data applicable to the Work and delete references to information not applicable.
 a. Prepare supplementary text if manufacturers' standard printed data are not available and where the information is necessary for proper operation and maintenance of equipment or systems.
 2. Drawings, diagrams, and instructions required for maintenance, including disassembly and component removal, replacement, and assembly.
 3. Identification and nomenclature of parts and components.
 4. List of items recommended to be stocked as spare parts.

D. Maintenance Procedures: Include the following information and items that detail essential maintenance procedures:
 1. Test and inspection instructions.
 2. Troubleshooting guide.
 3. Precautions against improper maintenance.
 4. Disassembly; component removal, repair, and replacement; and reassembly instructions.
5. Aligning, adjusting, and checking instructions.
6. Demonstration and training video recording, if available.

E. Maintenance and Service Schedules: Include service and lubrication requirements, list of required lubricants for equipment, and separate schedules for preventive and routine maintenance and service with standard time allotment.

F. Spare Parts List and Source Information: Include lists of replacement and repair parts, with parts identified and cross-referenced to manufacturers' maintenance documentation and local sources of maintenance materials and related services.

G. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.
 1. Include procedures to follow and required notifications for warranty claims.

H. Drawings: Prepare drawings supplementing manufacturers' printed data to illustrate the relationship of component parts of equipment and systems and to illustrate control sequence and flow diagrams. Coordinate these drawings with information contained in record Drawings to ensure correct illustration of completed installation.

1.8 PRODUCT MAINTENANCE MANUALS

A. Product Maintenance Manual: Assemble a complete set of maintenance data indicating care and maintenance of each product, material, and finish incorporated into the Work.

B. Content: Organize manual into a separate section for each product, material, and finish. Include source information, product information, maintenance procedures, repair materials and sources, and warranties and bonds, as described below.

C. Product Information: Include the following, as applicable:
 1. Product name and model number.
 2. Manufacturer's name.
 3. Color, pattern, and texture.
 5. Reordering information for specially manufactured products.

D. Maintenance Procedures: Include manufacturer's written recommendations and the following:
 1. Inspection procedures.
 2. Types of cleaning agents to be used and methods of cleaning.
 3. List of cleaning agents and methods of cleaning detrimental to product.
 4. Schedule for routine cleaning and maintenance.
 5. Repair instructions.

E. Repair Materials and Sources: Include lists of materials and local sources of materials and related services.

F. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.
 1. Include procedures to follow and required notifications for warranty claims.
PART 2 - PRODUCTS (Not Used)
PART 3 - EXECUTION (Not Used)

END OF SECTION 017823
SECTION 017839 - PROJECT RECORD DOCUMENTS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes administrative and procedural requirements for project record documents, including the following:
 1. Record Drawings.
 2. Record Specifications.
 3. Record Product Data.

1.2 CLOSEOUT SUBMITTALS

A. Record Drawings: Comply with the following:
 1. Number of Copies: Submit one set(s) of marked-up record prints.
 2. Number of Copies: Submit copies of record Drawings as follows:
 a. Initial Submittal:
 1) Submit one paper-copy set(s) of marked-up record prints.
 2) Submit PDF electronic files of scanned record prints and one set(s) of plots.
 3) Submit record digital data files and one set(s) of plots.
 4) Engineer will indicate whether general scope of changes, additional information recorded, and quality of drafting are acceptable.
 b. Final Submittal:
 1) Submit three paper-copy set(s) of marked-up record prints.
 2) Submit PDF electronic files of scanned record prints and three set(s) of prints.
 3) Print each drawing, whether or not changes and additional information were recorded.
 c. Final Submittal:
 1) Submit one paper-copy set(s) of marked-up record prints.
 2) Submit record digital data files and three set(s) of record digital data file plots.
 3) Plot each drawing file, whether or not changes and additional information were recorded.

B. Record Specifications: Submit annotated PDF electronic files of Project's Specifications, including addenda and contract modifications.

C. Record Product Data: Submit annotated PDF electronic files and directories of each submittal.
 1. Where record Product Data are required as part of operation and maintenance manuals, submit duplicate marked-up Product Data as a component of manual.

1.3 RECORD DRAWINGS

A. Record Prints: Maintain one set of marked-up paper copies of the Contract Drawings and Shop Drawings, incorporating new and revised drawings as modifications are issued.
 1. Preparation: Mark record prints to show the actual installation where installation varies from that shown originally. Require individual or entity who obtained record data, whether individual or entity is Installer, subcontractor, or similar entity, to provide information for preparation of corresponding marked-up record prints.
 a. Give particular attention to information on concealed elements that would be difficult to identify or measure and record later.
 b. Accurately record information in an acceptable drawing technique.
c. Record data as soon as possible after obtaining it.
d. Record and check the markup before enclosing concealed installations.
e. Cross-reference record prints to corresponding photographic documentation.

2. Content: Types of items requiring marking include, but are not limited to, the following:
 a. Dimensional changes to Drawings.
 b. Revisions to details shown on Drawings.
 c. Depths of foundations.
 d. Locations and depths of underground utilities.
 e. Revisions to routing of piping and conduits.
 f. Revisions to electrical circuitry.
 g. Actual equipment locations.
 h. Duct size and routing.
 i. Locations of concealed internal utilities.
 j. Changes made by Change Order or Construction Change Directive.
 k. Changes made following Engineer's written orders.
 l. Details not on the original Contract Drawings.
 m. Field records for variable and concealed conditions.
 n. Record information on the Work that is shown only schematically.

3. Mark the Contract Drawings and Shop Drawings completely and accurately. Use personnel proficient at recording graphic information in production of marked-up record prints.

4. Mark record sets with erasable, red-colored pencil. Use other colors to distinguish between changes for different categories of the Work at same location.

5. Mark important additional information that was either shown schematically or omitted from original Drawings.

6. Note Construction Change Directive numbers, alternate numbers, Change Order numbers, and similar identification, where applicable.

B. Format: Identify and date each record Drawing; include the designation "PROJECT RECORD DRAWING" in a prominent location.
 1. Record Prints: Organize record prints into manageable sets. Bind each set with durable paper cover sheets. Include identification on cover sheets.
 2. Format: Annotated PDF electronic file with comment function enabled.
 3. Record Digital Data Files: Organize digital data information into separate electronic files that correspond to each sheet of the Contract Drawings. Name each file with the sheet identification. Include identification in each digital data file.

4. Identification: As follows:
 a. Project name.
 b. Date.
 c. Designation "PROJECT RECORD DRAWINGS."
 d. Name of Engineer and Construction Manager.
 e. Name of Contractor.

1.4 RECORD SPECIFICATIONS

A. Preparation: Mark Specifications to indicate the actual product installation where installation varies from that indicated in Specifications, addenda, and contract modifications.
 1. Give particular attention to information on concealed products and installations that cannot be readily identified and recorded later.
 2. Mark copy with the proprietary name and model number of products, materials, and equipment furnished, including substitutions and product options selected.
 3. Record the name of manufacturer, supplier, Installer, and other information necessary to provide a record of selections made.
 4. For each principal product, indicate whether record Product Data has been submitted in operation and maintenance manuals instead of submitted as record Product Data.
5. Note related Change Orders, record Product Data, and record Drawings where applicable.

B. Format: Submit record Specifications as scanned PDF electronic file(s) of marked-up paper copy of Specifications.

1.5 RECORD PRODUCT DATA

A. Recording: Maintain one copy of each submittal during the construction period for project record document purposes. Post changes and revisions to project record documents as they occur; do not wait until end of Project.

B. Preparation: Mark Product Data to indicate the actual product installation where installation varies substantially from that indicated in Product Data submittal.
 1. Give particular attention to information on concealed products and installations that cannot be readily identified and recorded later.
 2. Include significant changes in the product delivered to Project site and changes in manufacturer’s written instructions for installation.
 3. Note related Change Orders, record Specifications, and record Drawings where applicable.

C. Format: Submit record Product Data as scanned PDF electronic file(s) of marked-up paper copy of Product Data.
 1. Include record Product Data directory organized by Specification Section number and title, electronically linked to each item of record Product Data.

1.6 MAINTENANCE OF RECORD DOCUMENTS

A. Maintenance of Record Documents: Store record documents in the field office apart from the Contract Documents used for construction. Do not use project record documents for construction purposes. Maintain record documents in good order and in a clean, dry, legible condition, protected from deterioration and loss. Provide access to project record documents for Engineer’s and Construction Manager’s reference during normal working hours.
SECTION 017900 - DEMONSTRATION AND TRAINING

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes administrative and procedural requirements for instructing Owner's personnel, including the following:
 1. Instruction in operation and maintenance of systems, subsystems, and equipment.
 2. Demonstration and training video recordings.

1.2 INFORMATIONAL SUBMITTALS

A. Instruction Program: Submit outline of instructional program for demonstration and training, including a list of training modules and a schedule of proposed dates, times, length of instruction time, and instructors' names for each training module. Include learning objective and outline for each training module.
 1. Indicate proposed training modules using manufacturer-produced demonstration and training video recordings for systems, equipment, and products in lieu of video recording of live instructional module.

1.3 CLOSEOUT SUBMITTALS

A. Demonstration and Training Video Recordings: Submit two copies within seven days of end of each training module.
 1. At completion of training, submit complete training manual(s) for Owner's use prepared in same PDF file format required for operation and maintenance manuals specified in Section 017823 "Operation and Maintenance Data."

1.4 QUALITY ASSURANCE

A. Facilitator Qualifications: A firm or individual experienced in training or educating maintenance personnel in a training program similar in content and extent to that indicated for this Project, and whose work has resulted in training or education with a record of successful learning performance.

B. Instructor Qualifications: A factory-authorized service representative, complying with requirements in Section 014000 "Quality Requirements," experienced in operation and maintenance procedures and training.

C. Preinstruction Conference: Conduct conference at Project site to comply with requirements in Section 013100 "Project Management and Coordination."

1.5 COORDINATION

A. Coordinate instruction schedule with Owner's operations. Adjust schedule as required to minimize disrupting Owner's operations and to ensure availability of Owner's personnel.

B. Coordinate instructors, including providing notification of dates, times, length of instruction time, and course content.
C. Coordinate content of training modules with content of approved emergency, operation, and maintenance manuals. Do not submit instruction program until operation and maintenance data have been reviewed and approved by Engineer.

1.6 INSTRUCTION PROGRAM

A. Program Structure: Develop an instruction program that includes individual training modules for each system and for equipment not part of a system, as required by individual Specification Sections.

B. Training Modules: Develop a learning objective and teaching outline for each module. Include a description of specific skills and knowledge that participant is expected to master. For each module, include instruction for the following as applicable to the system, equipment, or component:

1. Basis of System Design, Operational Requirements, and Criteria: Include the following:
 a. System, subsystem, and equipment descriptions.
 b. Performance and design criteria if Contractor is delegated design responsibility.
 c. Operating standards.
 d. Regulatory requirements.
 e. Equipment function.
 f. Operating characteristics.
 g. Limiting conditions.
 h. Performance curves.

2. Documentation: Review the following items in detail:
 a. Emergency manuals.
 b. Systems and equipment operation manuals.
 c. Systems and equipment maintenance manuals.
 d. Product maintenance manuals.
 e. Project Record Documents.
 f. Identification systems.
 g. Warranties and bonds.
 h. Maintenance service agreements and similar continuing commitments.

3. Emergencies: Include the following, as applicable:
 a. Instructions on meaning of warnings, trouble indications, and error messages.
 b. Instructions on stopping.
 c. Shutdown instructions for each type of emergency.
 d. Operating instructions for conditions outside of normal operating limits.
 e. Sequences for electric or electronic systems.
 f. Special operating instructions and procedures.

4. Operations: Include the following, as applicable:
 a. Startup procedures.
 b. Equipment or system break-in procedures.
 c. Routine and normal operating instructions.
 d. Regulation and control procedures.
 e. Control sequences.
 f. Safety procedures.
 g. Instructions on stopping.
 h. Normal shutdown instructions.
 i. Operating procedures for emergencies.
 j. Operating procedures for system, subsystem, or equipment failure.
 k. Seasonal and weekend operating instructions.
 l. Required sequences for electric or electronic systems.
 m. Special operating instructions and procedures.

5. Adjustments: Include the following:
 a. Alignments.
b. Checking adjustments.
c. Noise and vibration adjustments.
d. Economy and efficiency adjustments.

6. Troubleshooting: Include the following:
 a. Diagnostic instructions.
 b. Test and inspection procedures.

7. Maintenance: Include the following:
 a. Inspection procedures.
 b. Types of cleaning agents to be used and methods of cleaning.
 c. List of cleaning agents and methods of cleaning detrimental to product.
 d. Procedures for routine cleaning.
 e. Procedures for preventive maintenance.
 f. Procedures for routine maintenance.
 g. Instruction on use of special tools.

8. Repairs: Include the following:
 a. Diagnosis instructions.
 b. Repair instructions.
 c. Disassembly; component removal, repair, and replacement; and reassembly instructions.
 d. Instructions for identifying parts and components.
 e. Review of spare parts needed for operation and maintenance.

1.7 PREPARATION

A. Assemble educational materials necessary for instruction, including documentation and training module. Assemble training modules into a training manual organized in coordination with requirements in Section 017823 "Operation and Maintenance Data."

B. Set up instructional equipment at instruction location.

1.8 INSTRUCTION

A. Facilitator: Engage a qualified facilitator to prepare instruction program and training modules, to coordinate instructors, and to coordinate between Contractor and Owner for number of participants, instruction times, and location.

B. Engage qualified instructors to instruct Owner's personnel to adjust, operate, and maintain systems, subsystems, and equipment not part of a system.

C. Scheduling: Provide instruction at mutually agreed-on times. For equipment that requires seasonal operation, provide similar instruction at start of each season.
 1. Schedule training with Owner at least seven days' advance notice.

D. Training Location and Reference Material: Conduct training on-site in the completed and fully operational facility using the actual equipment in-place. Conduct training using final operation and maintenance data submittals.

E. Evaluation: At conclusion of each training module, assess and document each participant's mastery of module by use of a demonstration performance-based test.

F. Cleanup: Collect used and leftover educational materials and remove from Project site. Remove instructional equipment. Restore systems and equipment to condition existing before initial training use.
PART 2 - PRODUCTS

PART 3 - EXECUTION

END OF SECTION 017900
TABLE OF CONTENTS

DIVISION 22 - PLUMBING

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 0500</td>
<td>COMMON WORK RESULTS FOR PLUMBING</td>
</tr>
<tr>
<td>22 0553</td>
<td>IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT</td>
</tr>
<tr>
<td>22 0719</td>
<td>PLUMBING PIPING INSULATION</td>
</tr>
<tr>
<td>22 1116</td>
<td>DOMESTIC WATER PIPING</td>
</tr>
<tr>
<td>22 1319</td>
<td>SANITARY WASTE PIPING SPECIALTIES</td>
</tr>
</tbody>
</table>

END OF TABLE OF CONTENTS
SECTION 220500 - COMMON WORK RESULTS FOR PLUMBING

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following:
 1. Submittals.
 2. Quality Assurance
 3. Examination.
 4. Preparation.
 5. Repair/Restoration.
 6. Cleaning.
 7. Piping Installation.
 8. Mechanical sleeve seals.
 9. Sleeves.
 10. Grout.
 11. Plumbing demolition.
 12. Equipment installation requirements common to equipment sections.
 14. Operation and Maintenance Manuals

1.2 DEFINITIONS

A. Finished Spaces: Spaces other than plumbing and electrical equipment rooms, furred spaces, pipe chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspace, and tunnels.

B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and plumbing equipment rooms.

C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in chases.

E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.

1.3 SUBMITTALS

A. Welding certificates.

B. Product Data:
 1. Manufacturer’s catalog data for each manufactured item.
 a. Provide section in submittal for each type of item of equipment. Include Manufacturer’s catalog data of each manufactured item and enough information to show compliance with Contract Document requirements. Literature shall show capacities and size of equipment used and be marked indicating each specific item with applicable data underlined.
 b. Include name, address, and phone number of each supplier.

C. Shop Drawings:
1. Schematic control diagrams for each separate fan system, heating system, control panel, etc. Each diagram shall show locations of all control and operational components and devices. Mark correct operating settings for each control device on these diagrams.

2. Diagram for electrical control system showing wiring of related electrical control items such as firestats, fuses, interlocks, electrical switches, and relays. Include drawings showing electrical power requirements and connection locations.

3. Drawing of each temperature control panel identifying components in panels and their function.

4. Other shop drawings required by Division 22 trade Sections.

1.4 COMMON INSTALLATION PROVISIONS

A. Manufacturer's Instructions: Comply with Manufacturer's installation instructions and recommendations to extent that those instructions and recommendations are more explicit or stringent than requirements contained in Contract Documents. Notify Architect of conflicts between Manufacturer's installation instructions and contract documents requirements prior to proceeding.

B. Provide attachment and connection devices and methods necessary for securing work. Secure work true to line and level. Anchor each product securely in place, accurately located, and aligned with other work. Allow for expansion and building movement.

C. Visual Effects: Provide uniform joint widths in exposed work. Arrange joints in exposed work to obtain best visual effect. Refer questionable choices to Architect for final decision.

D. Install each component during weather conditions and project status that will ensure best possible results. Isolate each part of completed construction from incompatible material as necessary to prevent deterioration.

E. Coordinate temporary enclosures with required inspections and tests, to reduce necessity of uncovering completed construction for that purpose.

F. Mounting Heights: Where mounting heights are not shown, install individual components at standard mounting heights recognized within the industry or local codes for that application. Refer questionable mounting height decisions to Architect for final decision.

1.5 QUALITY ASSURANCE

A. Steel Support Welding: For processes and operators shall comply with AWS D1.1, "Structural Welding Code--Steel."

B. Steel Pipe Welding: For processes and operators shall comply with ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 2. Certify that each welder has passed AWS certifications tests for welding processes involved and that certification is current.

C. Electrical Characteristics for Plumbing Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

D. Requirements of Regulatory Agencies:
 1. Perform work in accordance with applicable provisions of Plumbing Codes and Gas Ordinances applicable to Project. Provide materials and labor necessary to comply with rules, regulations and ordinances.
2. In case of differences between building codes, laws, local ordinances, utility company regulations, and Contract Documents, the most stringent shall govern. Notify Architect in writing of such differences before performing work affected by such differences.

E. Identification:
1. Motor and equipment name plates as well as applicable UL and AGA labels shall be in place when Product is turned over to Owner.
2. Materials shall bear Manufacturer’s name and trade name. Equipment and materials of same general type shall be of same make throughout work to provide uniform appearance, operation, and maintenance.

1.6 OPERATION AND MAINTENANCE DATA

A. Summary:
1. This Section includes administrative and procedure requirements for preparing operation and maintenance manuals, including the following:
 a. Operation manuals for systems, subsystems, and equipment.
 b. Maintenance manuals for the care and maintenance of products, materials, finishes, systems and equipment.

B. Submittals:
1. Manual: Submit one copy of each manual in final form at least 15 days before final inspection. Architect will return copy with comments within 15 days after final inspection.
 a. Correct or modify each manual to comply with Architect’s comments. Submit 3 copies of each corrected manual within 15 days of receipt of Architect’s comments.

PART 2 - PRODUCTS

2.1 EXAMINATION:

A. Site Inspection:
1. Examine premises to understand conditions that may affect performance of work of this Division before submitting proposals for this work. Examine adjoining work on which mechanical work is dependent for efficiency and report work that requires correction.
2. No subsequent allowance for time or money will be considered for any consequence related to failure to examine site conditions.

B. Drawings:
1. Plumbing and Mechanical Drawings show general arrangement of piping, ductwork, equipment, etc. Follow as closely as actual building construction and work of other trades will permit.
2. Consider Architectural and Structural Drawings part of this work insofar as these drawings furnish information relating to design and construction of building. These drawings take precedence over Plumbing and Mechanical Drawings.
3. Because of scale of Drawings, it is not possible to indicate all offsets, fittings, and accessories that may be required. Investigate structural and finish conditions affecting this work and arrange work accordingly, providing such fittings, valves, and accessories required to meet conditions.

C. Ensure that items to be furnished fit space available. Make necessary field measurements to ascertain space requirements including those for connections and furnish and install equipment of size and shape so final installation shall suit true intent and meaning of Contract Documents. If approval is received by Addendum or Change Order to use other than originally specified items, be responsible for specified capacities and for ensuring that items to be furnished will fit space available.
2.2 PREPARATION:

A. Check that slots and openings provided under other Divisions through floors, walls, ceilings, and roofs are properly located. Perform cutting and patching caused by neglecting to coordinate with Divisions providing slots and openings at no additional cost to Owner.

B. Changes Due to Equipment Selection:
1. Where equipment specified or otherwise approved requires different arrangement or connections from that shown in Contract Documents, submit drawings, if requested by Architect, showing proposed installations.
2. If proposed changes are approved, install equipment to operate properly and in harmony with intent of Contract Documents. Make incidental changes in piping, ductwork, supports, installation, wiring, heaters, panelboards, and as otherwise necessary.
3. Provide any additional motors, valves, controllers, fittings, and other additional equipment required for proper operation of the system resulting from selection of equipment, including all required changes in affected trades.
4. Be responsible for the proper location of roughing-in and connections provided under other Divisions.

2.3 REPAIR/RESTORATION:

A. Each Section of this Division shall bear expense of cutting, patching, repairing, and replacing of work of other Sections required because of its fault, error, tardiness, or because of damage done by it.
1. Patch and repair walls, floors, ceilings, and roofs with materials of same quality and appearance as adjacent surfaces unless otherwise shown.
2. Surface finishes shall exactly match existing finishes of same materials.

B. Cutting, patching, repairing, and replacing pavements, sidewalks, roads, and curbs to permit installation of work of this Division is responsibility of Section installing work.

2.4 CLEANING:

A. Clean exposed piping, ductwork, equipment, and fixtures. Remove stickers from fixtures and adjust flush valves.

B. No more than one week before Final Inspection, flush out bearings and clean other lubricated surfaces with flushing oil. Provide best quality and grade of lubricant specified by Equipment Manufacturer.

C. Replace filters in equipment for moving air with new filters of specified type no more than one week before Final Inspection.

2.5 PIPING INSTALLATION:

A. Interface With Other Work:
1. Furnish sleeves, inserts, supports, and equipment that are to be installed by others in sufficient time to be incorporated into construction as work proceeds. Locate these items and see they are properly installed.

B. Furnish and install complete system of piping, valved as indicated or as necessary to completely control entire apparatus.
1. Pipe drawings are diagrammatic and indicate general location and connections. Piping may have to be offset, lowered, or raised as required or directed at site. This does not relieve this Division from responsibility for proper erection of systems of piping in every respect.
2. Arrange piping to not interfere with removal of other equipment, ducts, or devices, or block access to doors, windows, or access openings.
 a. Arrange so as to facilitate removal of tube bundles.
 b. Provide accessible flanges or ground joint unions, as applicable for type of piping specified, at connections to equipment and on bypasses.
 1) Make connections of dissimilar metals with di-electric unions.
 2) Install valves and unions ahead of traps and strainers. Provide unions on both sides of traps.
 c. Do not use reducing bushings, street elbows, bull head tees, close nipples, or running traps.
 d. Do not use reducing bushings, street elbows, bull head tees, close nipples, or running couplings.
 e. Install piping systems so they may be easily drained. Provide drain valves at low points and manual air vents at high points in hot water heating and cooling water piping.
 f. Install piping to insure noiseless circulation.
 g. Place valves and specialties to permit easy operation and access. Valves shall be regulated, packed, and glands adjusted at completion of work before final acceptance.

3. Do not install piping in shear walls.

C. Properly support piping and make adequate provisions for expansion, contraction, slope and anchorage.
 1. Cut piping accurately for fabrication to measurements established at site. Remove burr and cutting slag from pipes.
 2. Work piping into place without springing or forcing. Make piping connections to pumps and other equipment without strain at piping connection. Remove bolts in flanged connections or disconnect piping to demonstrate that piping has been so connected, if requested.
 3. Make changes in direction with proper fittings.
 4. Except for underground pipe, suspend piping from roof trusses or clamp to vertical walls using Unistrut and clamps. Do not hang pipe from other pipe, equipment, or ductwork. Laying of piping on any building element is not allowed.
 5. Supports for Horizontal Piping:
 a. Support metal piping at 96 inches mm on center maximum for pipe 1-1/4 inches or larger and 72 inches on center maximum for pipe 1-1/8 inch or less.
 b. Support thermoplastic pipe at 48 inches on center maximum.
 c. Provide support at each elbow. Install additional support as required.
 6. Supports for Vertical Piping:
 a. Place riser clamps at each floor or ceiling level.
 b. Securely support clamps by structural members, which in turn are supported directly from building structure.
 c. Provide clamps as necessary to brace pipe to wall.
 7. Insulate hangers for copper pipe from piping by means of at least two layers of Scott 33 plastic tape.
 8. Sleeves through floors shall extend 1/4 inch above floor finish in mechanical equipment rooms above basement floor. In other rooms, sleeves shall be flush with floor.
 9. Sleeves through floors and foundation walls shall be watertight.

2.6 MECHANICAL SLEEVE SEALS

A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.

B. Sealing Elements: EPDM interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
C. Pressure Plates: Carbon steel. Include two for each sealing element.

D. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.7 SLEEVES

A. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.

C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 1. Underdeck Clamp: Clamping ring with set screws.

2.8 GROUT

A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 2. Design Mix: 5000-psi, 28-day compressive strength.

2.9 OPERATION AND MAINTENANCE MANUALS

A. General:
 1. Organization: Unless otherwise indicated, organize each manual into a separate section for each system and subsystem, and a separate section for each piece of equipment not part of a system. Each manual shall contain a title page, table of contents, and manual contents.
 2. Title Page: Enclose title page in transparent plastic sleeve. Include the following information.
 a. Subject matter included in manual.
 b. Name and address of Project.
 c. Name and address of Owner.
 d. Date of submittal.
 e. Name, address, and telephone number of Contractor.
 f. Name and address of Architect.
 g. Cross-reference to related systems in other operation and maintenance manuals.
 3. Table of Contents: List each product included in manual, identified by product name, indexed to the content of the volume, and cross-referenced to Specification Section number in Project Manual.
 4. Manual Contents: Organize into sets of manageable size. Arrange contents alphabetically by system, subsystem, and equipment. If possible, assemble instructions for subsystems, equipment, and components of one system into a single binder.
 a. Binders: Heavy-duty, 3-ring, vinyl-covered, loose-leaf binders, in thickness necessary to accommodate contents, sized to hold 8-1/2 by-11-inch paper; with clear plastic sleeve on spine to hold label describing contents and with pockets inside covers to hold folded oversize sheets.
 1) Identify each binder on front and spine, with printed title “OPERATION AND MAINTENANCE MANUAL,” Project title or name, and subject matter of contents. Indicate volume number for multiple-volume sets.
b. Dividers: Heavy-paper dividers with plastic-covered tabs for each section. Mark each tab to indicate contents. Include typed list of products and major components of equipment included in the section on each divider, cross-referenced to Specification Section number and title of Project Manual.

c. Protective Plastic Sleeves: Transparent plastic sleeves designed to enclose diagnostic software diskettes for computerized electronic equipment.

d. Drawings: Attach reinforced, punched binder tabs on drawings and bind with text.
 1) If oversize drawings are necessary, fold drawings to same size as text pages and use as foldouts.
 2) If drawings are too large to be used as foldouts, fold and place drawings in labeled envelopes and bind envelopes in rear of manual. At appropriate locations in manual, insert typewritten pages indicating drawing titles, descriptions of contents, and drawing locations.

5. Include copies of approved shop drawings and copies of warranties required in individual Sections of Division 22.

B. Operation Manuals
1. Content: In addition to requirements in this Section, include operation data required in individual Specification Sections and equipment descriptions, operating standards, operating procedures, operating logs, wiring and control diagrams, and license requirements.

2. Descriptions: Include the following:
 a. Product name and model number.
 b. Manufacturer’s name.
 c. Equipment identification with serial number of each component.
 d. Equipment function.
 e. Operating characteristics.
 f. Limiting conditions.
 g. Performance curves.
 h. Engineering data and tests.
 i. Complete nomenclature and number of replacement parts.

3. Operation Procedures: Include start-up, break-in, and control procedures; stopping and normal shutdown instructions; routine, normal, seasonal, and weekend operating instructions; and required sequences for electric or electronic systems.

4. Systems and Equipment Controls: Describe the sequence of operation, and diagram controls as installed.

C. Product Maintenance Manual
1. Content: Organize manual into a separate section for each product, material, and finish. Include source information, product information, maintenance procedures, repair materials and sources, and warranties and bonds, as described below.

2. Source Information: List each product included in manual, identified by product name and arranged to match manual’s table of contents. For each product, list name, address, and telephone number of installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual.

3. Product Information: Include the following, as applicable:
 a. Product name and model number.
 b. Manufacturer’s name.
 c. Color, pattern, and texture.
 d. Material and chemical composition.
 e. Reordering information for specially manufactured products.

5. Repair Materials and Sources: Include lists of materials and local sources of materials and related services.

6. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.

D. Systems and Equipment Maintenance Manual
1. Content: For each system, subsystem, and piece of equipment not part of a system, include source information, manufacturer’s maintenance documentation, maintenance procedures, maintenance and service schedules, spare parts list and source information, maintenance service contracts, and warranty and bond information, as described below.

2. Source Information: List each system, subsystem, and piece of equipment included in manual, identified by product name and arranged to match manual’s table of contents. For each product, list name, address, and telephone number of installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual.

3. Manufacturer’s Maintenance Documentation: Manufacturer’s maintenance documentation including maintenance instructions, drawings and diagrams for maintenance, nomenclature of parts and components, and recommended spare parts for each component part or piece of equipment.

4. Maintenance Procedures: Include test and inspection instructions, troubleshooting guide, disassembly instructions, and adjusting instructions, and demonstration and training videotape if available, that detail essential maintenance procedures.

5. Maintenance and Service Schedules: Include service and lubrication requirements, list of required lubricants for equipment, and separate schedules for preventive and routine maintenance and service with standard time allotment.

6. Spare Parts List and Source Information: Include lists of replacement and repair parts, with parts identified and cross-referenced to manufacturers’ maintenance documentation and local sources of maintenance materials and related services.

7. Maintenance Service Contracts: Include copies of maintenance agreements with name and telephone number of service agent.

8. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.

PART 3 - EXECUTION

3.1 PLUMBING DEMOLITION

A. Refer to Division 01 Sections "Cutting and Patching" and Division 02 Section "Selective Demolition" for general demolition requirements and procedures.

B. Disconnect, demolish, and remove plumbing systems, equipment, and components indicated to be removed.
 1. Piping to Be Removed: Remove portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material.
 2. Piping to Be Abandoned in Place: Drain piping and cap or plug piping with same or compatible piping material.
 3. Equipment to Be Removed: Disconnect and cap services and remove equipment.
 4. Equipment to Be Removed and Reinstalled: Disconnect and cap services and remove, clean, and store equipment; when appropriate, reinstall, reconnect, and make equipment operational.
 5. Equipment to Be Removed and Salvaged: Disconnect and cap services and remove equipment and deliver to Owner.

C. If pipe, insulation, or equipment to remain is damaged in appearance or is unserviceable, remove damaged or unserviceable portions and replace with new products of equal capacity and quality.
3.2 PIPING SYSTEMS - COMMON REQUIREMENTS

A. Install piping according to the following requirements and Division 22 Sections specifying piping systems.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

F. Install piping to permit valve servicing.

G. Install piping at indicated slopes.

H. Install piping free of sags and bends.

I. Install fittings for changes in direction and branch connections.

J. Install piping to allow application of insulation.

K. Select system components with pressure rating equal to or greater than system operating pressure.

L. Install escutcheons for penetrations of walls, ceilings, and floors.

M. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.

N. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 1. Install steel pipe for sleeves smaller than 6 inches in diameter.
 2. Install cast-iron "wall pipes" for sleeves 6 inches and larger in diameter.
 3. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

O. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 07 Section "Through-Penetration Firestop Systems" for materials.

P. Verify final equipment locations for roughing-in.
Q. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

3.3 ERECTION OF METAL SUPPORTS AND ANCHORAGES

A. Refer to Division 05 Section "Metal Fabrications" for structural steel.
B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor plumbing materials and equipment.
C. Field Welding: Comply with AWS D1.1.

3.4 GROUTING

A. Mix and install grout for plumbing equipment base bearing surfaces, pump and other equipment base plates, and anchors.
B. Clean surfaces that will come into contact with grout.
C. Provide forms as required for placement of grout.
D. Avoid air entrapment during placement of grout.
E. Place grout, completely filling equipment bases.
F. Place grout on concrete bases and provide smooth bearing surface for equipment.
G. Place grout around anchors.
H. Cure placed grout.

3.5 O & M MANUAL PREPREPARATION

A. Product Maintenance Manual: Assemble a complete set of maintenance data indicating care and maintenance of each product, material and finish incorporated into the Work.
B. Operation and Maintenance Manuals: Assemble a complete set of operation and maintenance data indicating operation and maintenance of each system, subsystem, and piece of equipment not part of a system.
C. Manufacturer’s Data: Where manuals contain manufacturer’s standard printed data, include only sheets pertinent to product or component installed. Mark each sheet to identify each product or component incorporated into the Work. If data includes more than one item in a tabular format, identify each item using appropriate references from the Contract Documents. Identify data applicable to the Work and delete references to information not applicable.
D. Drawings: Prepare drawings supplementing manufacturers’ printed data to illustrate the relationship of component parts of equipment and systems and to illustrate control sequence and flow diagrams. Coordinate these drawings with information contained in Record Drawings to ensure correct illustration of completed installation.
 1. Do not use original Project Record Documents as part of operation and maintenance manuals.
E. Comply with Division 01 Section “Closeout Procedures” for schedule for submitting operation and maintenance documentation.
SECTION 220553 - IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Equipment labels.
 2. Pipe labels.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Samples: For color, letter style, and graphic representation required for each identification material and device.

C. Equipment-Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Metal Labels for Equipment:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Brady Corporation
 b. Brimar Industries, Inc.
 c. Carlton Industries, LP
 d. Champion America
 e. Craftmark Pipe Markers
 f. Emedco
 g. Kolbi Pipe Marker Co.
 h. LEM Products Inc.
 i. Marking Services, Inc.
 j. Seton Identification Products; a Brady Corporation company
 2. Material and Thickness: Stainless steel, 0.025-inch minimum thickness, with predrilled or stamped holes for attachment hardware.
 3. Letter and Background Color: As indicated for specific application under Part 3.
 4. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 5. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances of up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 7. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Plastic Labels for Equipment:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Brady Corporation
b. Brimar Industries, Inc.
c. Carlton Industries, LP
d. Champion America
e. Craftmark Pipe Markers
f. Emedco
g. Kobi Pipe Marker Co.
h. LEM Products Inc.
i. Marking Services, Inc.
j. Seton Identification Products; a Brady Corporation company

2. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, with predrilled holes for attachment hardware.

3. Letter and Background Color: As indicated for specific application under Part 3.

4. Maximum Temperature: Able to withstand temperatures of up to 160 deg F.

5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances of up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

C. Label Content: Include equipment’s Drawing designation or unique equipment number, electrical panel and circuit, Drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.

2.2 PIPE LABELS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Actioncraft Products, Inc.; a division of Industrial Test Equipment Co., Inc.
2. Brady Corporation
4. Carlton Industries, LP
5. Champion America.
6. Craftmark Pipe Markers
7. Emedco
8. Kobi Pipe Marker Co.
9. LEM Products Inc.
10. Marking Services
11. Seton Identification Products; a Brady Corporation company

B. General Requirements for Manufactured Pipe Labels: Preprinted, color coded, with lettering indicating service and showing flow direction in accordance with ASME A13.1.

C. Letter and Background Color: As indicated for specific application under Part 3.

D. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

E. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings. Also include:
1. Pipe size.
2. Flow-Direction Arrows: Include flow-direction arrows on[main] distribution piping. Arrows may be either integral with label or applied separately.
3. Lettering Size: At least 1/2 inch for viewing distances of up to 72 inches and proportionately larger lettering for greater viewing distances.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of incompatible primers, paints, and encapsulants, as well as dirt, oil, grease, release agents, and other substances that could impair bond of identification devices.

3.2 INSTALLATION, GENERAL REQUIREMENTS

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

B. Coordinate installation of identifying devices with locations of access panels and doors.

C. Install identifying devices before installing acoustical ceilings and similar concealment.

D. Locate identifying devices so that they are readily visible from the point of normal approach.

3.3 INSTALLATION OF EQUIPMENT LABELS, WARNING SIGNS, AND LABELS

A. Permanently fasten labels on each item of plumbing equipment.

B. Locate equipment labels where accessible and visible.

3.4 INSTALLATION OF PIPE LABELS

A. Piping Color Coding: Painting of piping is specified in Section 099123 "Interior Painting."

B. Install pipe labels showing service and flow direction with permanent adhesive on pipes.

C. Pipe-Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 1. Within 3 ft. of each valve and control device.
 2. At access doors, manholes, and similar access points that permit view of concealed piping.
 3. Within 3 ft. of equipment items and other points of origination and termination.
 4. Spaced at maximum intervals of 25 ft. along each run. Reduce intervals to 10 ft. in areas of congested piping and equipment.

D. Do not apply plastic pipe labels or plastic tapes directly to bare pipes conveying fluids at temperatures of 125 deg F or higher. Where these pipes are to remain uninsulated, use a short section of insulation or use stenciled labels.

E. Flow-Direction Flow Arrows: Use arrows, in compliance with ASME A13.1, to indicate direction of flow in pipes, including pipes where flow is allowed in both directions.

F. Pipe-Label Color Schedule:
 1. Domestic Cold-Water Piping: White letters on an ANSI Z535.1 safety-green background.
 2. Domestic Hot-Water Piping: White letters on an ANSI Z535.1 safety-green background

4. [Sanitary Waste] [and] [Storm Drainage] Piping: [White letters on a black background].

6. Natural Gas Piping:
 a. Background Color: Yellow.
 b. Letter Color: Black.

END OF SECTION 220553
SECTION 220719 - PLUMBING PIPING INSULATION

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes insulating the following plumbing piping services:
 1. Domestic cold-water piping.
 2. Domestic hot-water piping.
 3. Domestic recirculating hot-water piping.

B. Related Sections:
 1. Section 220716 "Plumbing Equipment Insulation" for equipment insulation.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Samples: For each type of insulation and jacket indicated.

1.3 INFORMATIONAL SUBMITTALS

A. Material test reports.

B. Field quality-control reports.

1.4 QUALITY ASSURANCE

A. Installer Certifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

1.5 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."

B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

C. Coordinate installation and testing of heat tracing.

1.6 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products in accordance with ASTM E84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation, jacket materials, adhesive, mastic, tapes, and cement material containers with appropriate markings of applicable testing agency.
 1. All Insulation Installed Indoors and Outdoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.

2.2 INSULATION MATERIALS

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come into contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested in accordance with ASTM C871.

D. Insulation materials for use on austenitic stainless steel shall be certified as acceptable in accordance with ASTM C795.

E. Glass-Fiber, Preformed Pipe: Glass fibers bonded with a thermosetting resin; suitable for maximum use temperature up to 850 deg F in accordance with ASTM C411. Comply with ASTM C547.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Johns Manville; a Berkshire Hathaway company.
 b. Knauf Insulation.
 c. Manson Insulation Inc.
 d. Owens Corning.
 2. Preformed Pipe Insulation: Type I, Grade A with factory-applied ASJ.
 3. Fabricated shapes in accordance with ASTM C450 and ASTM C585.

2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.

B. Glass-Fiber and Mineral Wool Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Foster Brand; H. B. Fuller Construction Products.
 c. Mon-Eco Industries, Inc.

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. Childers Brand; H. B. Fuller Construction Products.
b. Foster Brand; H. B. Fuller Construction Products.
c. Mon-Eco Industries, Inc.

D. PVC Jacket Adhesive: Compatible with PVC jacket.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Johns Manville; a Berkshire Hathaway company.
 b. P.I.C. Plastics, Inc.
 c. Proto Corporation.
 d. Speedline Corporation.
 e. The Dow Chemical Company.

2.4 MASTICS AND COATINGS

A. Materials shall be compatible with insulation materials, jackets, and substrates.

B. Vapor-Retarder Mastic, Water Based: Suitable for indoor use on below-ambient services.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Foster Brand; H. B. Fuller Construction Products.
 c. Knauf Insulation.
 d. Mon-Eco Industries, Inc.
 e. Vimasco Corporation.
2. Water-Vapor Permeance: Comply with ASTM E96/E96M or ASTM F1249.
3. Service Temperature Range: Minus 20 to plus 180 deg F.
4. Comply with MIL-PRF-19565C, Type II, for permeance requirements.

C. Breather Mastic: Water based; suitable for indoor and outdoor use on above-ambient services.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Foster Brand; H. B. Fuller Construction Products.
 c. Knauf Insulation.
 d. Mon-Eco Industries, Inc.
 e. Vimasco Corporation.
2. Water-Vapor Permeance: ASTM E96/E96M, greater than 1.0 perm at manufacturer's recommended dry film thickness.
3. Service Temperature Range: 0 to plus 180 deg F.

2.5 SEALANTS

A. Materials shall be as recommended by the insulation manufacturer and shall be compatible with insulation materials, jackets, and substrates.

B. Metal Jacket Flashing Sealants:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Foster Brand; H. B. Fuller Construction Products.
 c. Mon-Eco Industries, Inc.
2. Materials shall be compatible with insulation material, jackets and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F.
5. Color: Aluminum.

C. ASJ Flashing Sealants:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Foster Brand; H. B. Fuller Construction Products.
2. Materials shall be compatible with insulation material, jackets and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F.

2.6 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C1136, Type I.
2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C1136, Type I.
3. ASJ+: Aluminum foil reinforced with glass scrim bonded to a kraft paper interleaving with an outer film leaving no paper exposed; complying with ASTM C1136, Types I, II, III, IV, and VII.
4. PSK Jacket: Aluminum foil fiberglass reinforced scrim with polyethylene backing, complying with ASTM C1136, Type II.

2.7 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C1136.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. 3M Industrial Adhesives and Tapes Division.
 b. Avery Dennison Corporation, Specialty Tapes Division.
 c. Ideal Tape Co., Inc., an American Biltrite Company.
 d. Knauf Insulation.
2. Width: 3 inches.
3. Thickness: 11.5 mils.
5. Elongation: 2 percent.
6. Tensile Strength: 40 lbf/inch in width.
7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

2.8 SECUREMENTS

A. Bands:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Johns Manville; a Berkshire Hathaway company.
 b. RPR Products, Inc.
2. Stainless Steel: ASTM A240/A240M, Type 304 or Type 316; 0.015 inch thick, 3/4 inch wide with wing seal or closed seal.
3. Aluminum: ASTM B209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 3/4 inch wide with wing seal or closed seal.

B. Staples: Outward-clinching insulation staples, nominal 3/4-inch-wide, stainless steel or Monel.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:
 1. Stainless Steel: Coat 300 series stainless steel with an epoxy primer 5 mils thick and an epoxy finish 5 mils thick if operating in a temperature range of between 140 and 300 deg F. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
 2. Carbon Steel: Coat carbon steel operating at a service temperature of between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.

C. Coordinate insulation installation with the tradesman installing heat tracing. Comply with requirements for heat tracing that apply to insulation.

D. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless steel surfaces, use demineralized water.

3.2 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping, including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and of thicknesses required for each item of pipe system, as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, compress, or otherwise damage insulation or jacket.

D. Install insulation with longitudinal seams at top and bottom (12 o'clock and 6 o'clock positions) of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during storage, application, and finishing. Replace insulation materials that get wet during storage or in the installation process before being properly covered and sealed in accordance with the contract documents, unless otherwise approved by the engineer-of-record.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends attached to structure with vapor-barrier mastic.
 3. Install insert materials and insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth, but not to the extent of creating wrinkles or areas of compression in the insulation.
 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward-clinching staples along both edges of strip, spaced 4 inches o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward-clinching staples along edge at 4 inches o.c.
 a. For below-ambient services, apply vapor-barrier mastic over staples.
 4. Cover joints and seams with tape, in accordance with insulation material manufacturer's written instructions, to maintain vapor seal.
 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches in similar fashion to butt joints.

P. For above-ambient services, do not install insulation to the following:
 1. Vibration-control devices.
 2. Testing agency labels and stamps.
 3. Nameplates and data plates.

3.3 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install...
insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
1. Seal penetrations with flashing sealant.
2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
4. Seal jacket to wall flashing with flashing sealant.

D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.

F. Insulation Installation at Floor Penetrations:
1. Pipe: Install insulation continuously through floor penetrations.
2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.4 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials, except where more specific requirements are specified in various pipe insulation material installation articles below.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, Mechanical Couplings, and Unions:
1. Install insulation over fittings, valves, strainers, flanges, mechanical couplings, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
2. Insulate pipe elbows using preformed fitting insulation or mitered or routed fittings made from same material and density as that of adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as that used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as that used for adjacent pipe. Overlap adjoining pipe insulation by not less than 2 times the thickness of pipe insulation, or one pipe diameter,
whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.

5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than 2 times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers, so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.

6. Insulate flanges, mechanical couplings, and unions, using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than 2 times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Stencil or label the outside insulation jacket of each union with the word "union" matching size and color of pipe labels.

7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

8. For services not specified to receive a field-applied jacket, except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing, using PVC tape.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as that of adjoining pipe insulation.
 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union at least 2 times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless steel or aluminum bands. Select band material compatible with insulation and jacket.
 3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.
 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
 5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.5 INSTALLATION OF GLASS-FIBER AND MINERAL WOOL INSULATION

A. Insulation Installation on Straight Pipes and Tubes:
 1. Secure each layer of preformed pipe insulation to pipe with wire or bands, and tighten bands without deforming insulation materials.
2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
3. For insulation with jackets on above-ambient surfaces, secure laps with outward-clinched staples at 6 inches o.c.
4. For insulation with jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive, as recommended by insulation material manufacturer, and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:
1. Install prefabricated pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with glass-fiber or mineral-wool blanket insulation.
4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:
1. Install prefabricated sections of same material as that of straight segments of pipe insulation when available.
2. When prefabricated insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:
1. Install prefabricated sections of same material as that of straight segments of pipe insulation when available.
2. When prefabricated sections are not available, install fabricated sections of pipe insulation to valve body.
3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
4. Install insulation to flanges as specified for flange insulation application.

3.6 **FINISHES**

A. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

B. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

C. Do not field paint aluminum or stainless steel jackets.

3.7 **FIELD QUALITY CONTROL**

A. Owner will engage a certified testing agency to perform tests and inspections.

B. Engage a certified testing agency to perform tests and inspections.

C. Perform tests and inspections with the assistance of a factory-authorized service representative.

D. Tests and Inspections: Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three
locations of threaded fittings, three locations of welded fittings, two locations of threaded
strainers, two locations of welded strainers, three locations of threaded valves, and three
locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule,
General" Article.

E. All insulation applications will be considered defective if they do not pass tests and inspections.

F. Prepare test and inspection reports.

3.8 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for
each piping system and pipe size range. If more than one material is listed for a piping system,
selection from materials listed is Contractor's option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
1. Drainage piping located in crawl spaces.
2. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.9 INDOOR PIPING INSULATION SCHEDULE

A. Domestic Cold Water:
 1. NPS 1 and Smaller: Insulation shall be one of the following:
 a. Glass-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

B. Domestic Hot and Recirculated Hot Water:
 1. NPS 1-1/4 and Smaller: Insulation shall be one of the following:
 a. Glass-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
 2. NPS 1-1/2 and Larger: Insulation shall be one of the following:
 a. Glass-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

3.10 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-
 applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Piping, Exposed:
 1. PVC; 20 mils thick.

END OF SECTION 220719
SECTION 221116 - DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Copper tube and fittings.
 2. Piping joining materials.
 3. Transition fittings.
 4. Dielectric fittings.

1.2 ACTION SUBMITTALS

A. Product Data: For transition fittings and dielectric fittings.

1.3 INFORMATIONAL SUBMITTALS

A. System purging and disinfecting activities report.
 B. Field quality-control reports.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

B. Potable-water piping and components shall comply with NSF 14, NSF 61, and NSF 372.

2.2 COPPER TUBE AND FITTINGS

A. Drawn-Temper Copper Tube: ASTM B88, Type L.

B. Cast-Copper, Solder-Joint Fittings: ASME B16.18, pressure fittings.

D. Bronze Flanges: ASME B16.24, Class 150, with solder-joint ends.

E. Cast Copper Unions: MSS SP-123, cast-copper-alloy, hexagonal-stock body, with ball-and-socket, metal-to-metal seating surfaces and solder-joint or threaded ends.

F. Wrought Copper Unions: ASME B16.22.

2.3 PIPING JOINING MATERIALS

A. Pipe-Flange Gasket Materials:
 1. AWWA C110/A21.10, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free unless otherwise indicated.
 2. Full-face or ring type unless otherwise indicated.
B. Solder Filler Metals: ASTM B32, lead-free alloys.

C. Flux: ASTM B813, water flushable.

D. Brazing Filler Metals: AWS A5.8M/A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing unless otherwise indicated.

2.4 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Unions:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. A.Y. McDonald Mfg. Co.
 b. Capitol Manufacturing Company.
 c. Central Plastics Company.
 d. HART Industrial Unions, LLC.
 e. Jomar Valve.
 f. WATTS.
 g. Wilkins.
 h. Zurn Industries, LLC.

C. Dielectric Flanges:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Central Plastics Company.
 c. Matco-Norca.
 d. WATTS.
 e. Wilkins.
 f. Zurn Industries, LLC.
 3. Factory-fabricated, bolted, companion-flange assembly.
 4. Pressure Rating: 150 psig minimum at 180 Deg F.
 5. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

D. Dielectric-Flange Insulating Kits:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Central Plastics Company.
 d. GPT; a division of EnPRO Industries.
 2. Nonconductive materials for field assembly of companion flanges.
 4. Gasket: Neoprene or phenolic.
 5. Bolt Sleeves: Phenolic or polyethylene.
E. **Dielectric Nipples:**
 1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International/Smith-Cooper International; Tailwind Capital, LLC.
 b. Elster Perfection; a Honeywell Company.
 c. Precision Plumbing Products.
 d. Sioux Chief Manufacturing Company, Inc.
 e. Victaulic Company.
 2. **Standard:** IAPMO PS 66.
 3. **Electroplated steel nipple complying with ASTM F1545.**
 4. **Pressure Rating and Temperature:** 300 psig at 225 deg F.
 5. **End Connections:** Male threaded or grooved.
 6. **Lining:** Inert and noncorrosive, propylene.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.

B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.

C. **Fitting Option:** Extruded-tee connections and brazed joints may be used on aboveground copper tubing.

D. Aboveground domestic water piping, NPS 2 and smaller, shall be the following:
 1. Hard copper tube, ASTM B88, Type L; cast- or wrought-copper, solder-joint fittings; and soldered joints.

3.2 INSTALLATION OF PIPING

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.

B. Install copper tubing under building slab according to CDA's "Copper Tube Handbook."

C. Install domestic water piping level and plumb.

D. Rough-in domestic water piping for water-meter installation according to utility company's requirements.

E. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.

F. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

G. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.
H. Install piping to permit valve servicing.

I. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than the system pressure rating used in applications below unless otherwise indicated.

J. Install piping free of sags and bends.

K. Install fittings for changes in direction and branch connections.

L. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.

3.3 JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

D. Brazed Joints for Copper Tubing: Comply with CDA's "Copper Tube Handbook," "Brazed Joints" chapter.

E. Soldered Joints for Copper Tubing: Apply ASTM B813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B828 or CDA's "Copper Tube Handbook."

F. Joints for Dissimilar-Material Piping: Make joints using adapters compatible with materials of both piping systems.

3.4 INSTALLATION OF DIELECTRIC FITTINGS

A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.

B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric couplings or nipples.

C. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flanges.

D. Dielectric Fittings for NPS 5 and Larger: Use dielectric flange kits.

3.5 INSTALLATION OF HANGERS AND SUPPORTS

A. Install hangers for copper piping, with maximum horizontal spacing and minimum rod diameters, to comply with MSS SP-58, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.

B. Support horizontal piping within 12 inches of each fitting.
C. Support vertical runs of copper tubing and piping to comply with MSS SP-58, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.

3.6 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. When installing piping adjacent to equipment and machines, allow space for service and maintenance.

C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.

3.7 IDENTIFICATION

A. Identify system components. Comply with requirements for identification materials and installation in Section 220553 "Identification for Plumbing Piping and Equipment."

3.8 ADJUSTING

A. Perform the following adjustments before operation:
 1. Close drain valves, hydrants, and hose bibbs.
 2. Open shutoff valves to fully open position.
 3. Open throttling valves to proper setting.
 4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.
 a. Manually adjust ball-type balancing valves in hot-water-circulation return piping to provide hot-water flow in each branch.
 b. Adjust calibrated balancing valves to flows indicated.
 5. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
 7. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
 8. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.9 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
 1. Piping Inspections:
 a. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
 b. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 1) Roughing-in Inspection: Arrange for inspection of piping before concealing or closing in after roughing in and before setting fixtures.
 2) Final Inspection: Arrange for authorities having jurisdiction to observe tests specified in "Piping Tests" Subparagraph below and to ensure compliance with requirements.
 c. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
 d. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
 2. Piping Tests:
a. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
b. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
c. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
d. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow it to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
e. Repair leaks and defects with new materials, and retest piping or portion thereof until satisfactory results are obtained.
f. Prepare reports for tests and for corrective action required.

B. Domestic water piping will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

3.10 CLEANING

A. Clean and disinfect potable domestic water piping as follows:
1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
 a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 b. Fill and isolate system according to either of the following:
 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.
 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.
 c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
 d. Repeat procedures if biological examination shows contamination.
 e. Submit water samples in sterile bottles to authorities having jurisdiction.

B. Prepare and submit reports of purging and disinfecting activities. Include copies of water-sample approvals from authorities having jurisdiction.

C. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

END OF SECTION 221116
SECTION 221319 - SANITARY WASTE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Miscellaneous sanitary drainage piping specialties.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings:
 1. Show fabrication and installation details for frost-resistant vent terminals.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For sanitary waste piping specialties to include in emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTIONS

A. Sanitary waste piping specialties shall bear label, stamp, or other markings of specified testing agency.

B. Comply with NSF 14 for plastic sanitary waste piping specialty components.

2.2 MISCELLANEOUS SANITARY DRAINAGE PIPING SPECIALTIES

A. Deep-Seal Traps:
 1. Description: Cast-iron or bronze casting, with inlet and outlet matching connected piping and cleanout trap-seal primer valve connection.
 2. Size: Same as connected waste piping,
 a. NPS 2: 4-inch-minimum water seal.
 b. NPS 2-1/2 and Larger: 5-inch-minimum water seal.

B. Sleeve Flashing Device:
 1. Description: Manufactured, cast-iron fitting, with clamping device that forms sleeve for pipe floor penetrations of floor membrane. Include galvanized-steel pipe extension in top of fitting that will extend 1 inch above finished floor and galvanized-steel pipe extension in bottom of fitting that will extend through floor slab.
 2. Size: As required for close fit to riser or stack piping.
PART 3 - EXECUTION

3.1 INSTALLATION
 A. Install deep-seal traps on floor drains and other waste outlets.

3.2 PIPING CONNECTIONS
 A. Comply with requirements in Section 221316 "Sanitary Waste and Vent Piping" for piping installation requirements. Drawings indicate general arrangement of piping, fittings, and specialties.
 B. Install piping adjacent to equipment, to allow service and maintenance.

3.3 FLASHING INSTALLATION
 A. Comply with requirements in Section 076200 “Sheet Metal Flashing and Trim.”
 B. Fabricate flashing from single piece unless large pans, sumps, or other drainage shapes are required.
 C. Install sheet flashing on pipes, sleeves, and specialties passing through or embedded in floors and roofs with waterproof membrane.
 1. Pipe Flashing: Sleeve type, matching pipe size, with minimum length of 10 inches, and skirt or flange extending at least 8 inches around pipe.
 2. Sleeve Flashing: Flat sheet, with skirt or flange extending at least 8 inches around sleeve.
 3. Embedded Specialty Flashing: Flat sheet, with skirt or flange extending at least 8 inches around specialty.
 D. Set flashing on floor and roofs in solid coating of bituminous cement.
 E. Secure flashing into sleeve and specialty clamping ring or device.
 F. Install flashing for piping passing through roofs with counterflashing or commercially made flashing fittings, according to Section 076200 “Sheet Metal Flashing and Trim.”
 G. Extend flashing up vent pipe passing through roofs and turn down into pipe, or secure flashing into cast-iron sleeve having calking recess.

3.4 PROTECTION
 A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.
 B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION 221319
TABLE OF CONTENTS

DIVISION 23 – HVAC

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 0500</td>
<td>COMMON WORK RESULTS FOR HVAC</td>
</tr>
<tr>
<td>23 0519</td>
<td>METERS AND GAGES FOR HVAC PIPING</td>
</tr>
<tr>
<td>23 0523.13</td>
<td>BUTTERFLY VALVES FOR HVAC PIPING</td>
</tr>
<tr>
<td>23 0523.15</td>
<td>GATE VALVES FOR HVAC PIPING</td>
</tr>
<tr>
<td>23 0529</td>
<td>HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT</td>
</tr>
<tr>
<td>23 0548</td>
<td>VIBRATION AND SEISMIC CONTROLS FOR HVAC</td>
</tr>
<tr>
<td>23 0553</td>
<td>IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT</td>
</tr>
<tr>
<td>23 0594</td>
<td>TESTING, ADJUSTING AND BALANCING FOR HVAC</td>
</tr>
<tr>
<td>23 0719</td>
<td>HVAC PIPING INSULATION</td>
</tr>
<tr>
<td>23 0900</td>
<td>DIRECT DIGITAL CONTROL SYSTEM FOR HVAC</td>
</tr>
<tr>
<td>23 0993</td>
<td>SEQUENCE OF OPERATIONS FOR HVAC DDC</td>
</tr>
<tr>
<td>23 1123</td>
<td>FACILITY NATURAL GAS PIPING</td>
</tr>
<tr>
<td>23 2113</td>
<td>HYDRONIC PIPING</td>
</tr>
<tr>
<td>23 2116</td>
<td>HYDRONIC PIPING SPECIALTIES</td>
</tr>
<tr>
<td>23 2513</td>
<td>WATER TREATMENT FOR CLOSED-LOOP HYDRONIC SYSTEMS</td>
</tr>
<tr>
<td>23 5216</td>
<td>CONDENSING BOILERS</td>
</tr>
</tbody>
</table>

END OF TABLE OF CONTENTS
SECTION 230500 - COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following:
 1. Submittals.
 2. Quality Assurance.
 3. Examination.
 4. Preparation.
 5. Repair/Restoration.
 6. Cleaning.
 7. Piping Installation.
 8. Dielectric fittings.
 9. Mechanical sleeve seals.
 10. Sleeves.
 11. Escutcheons.
 13. HVAC demolition.
 14. Equipment installation requirements common to equipment sections.
 15. Concrete bases.
 17. Operation and Maintenance Manuals.

1.2 DEFINITIONS

A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspace, and tunnels.

B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.

C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and chases.

E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.

1.3 SUBMITTALS

A. Welding certificates.

B. Product Data:
 1. Manufacturer’s catalog data for each manufactured item.
 a. Provide section in submittal for each type of item of equipment. Include Manufacturer’s catalog data of each manufactured item and enough information to show compliance with Contract Document requirements. Literature shall show capacities and size of equipment used and be marked indicating each specific item with applicable data underlined.
b. Include name, address, and phone number of each supplier.

C. Shop Drawings:
1. Schematic control diagrams for each separate fan system, heating system, control panel, etc. Each diagram shall show locations of all control and operational components and devices. Mark correct operating settings for each control device on these diagrams.
2. Diagram for electrical control system showing wiring of related electrical control items such as firestats, fuses, interlocks, electrical switches, and relays. Include drawings showing electrical power requirements and connection locations.
3. Drawing of each temperature control panel identifying components in panels and their function.
 a. Other shop drawings required by Division 23 trade Sections.

1.4 QUALITY ASSURANCE

A. Steel Support Welding: Processes and operators shall comply with AWS D1.1, "Structural Welding Code--Steel."

B. Steel Pipe Welding: Processes and operators shall comply with to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 2. Certify that each welder has passed AWS certification tests for welding processes involved and that certification is current.

C. Electrical Characteristics for HVAC Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.
 1. The contractor shall verify motor voltages with the electrical drawings before ordering motorized equipment and controls. Motor name plate voltage shall be NEMA standard 200 volt for 208 volt three phase system and shall be NEMA Standard 230 volt for 240 volt three phase or single phase system. Starter heaters installed shall be coordinated with the name plate data.

D. Requirements of Regulatory Agencies:
 1. Perform work in accordance with applicable provisions of Plumbing Codes and Gas Ordinances applicable to Project. Provide materials and labor necessary to comply with rules, regulations and ordinances.
 2. In case of differences between building codes, laws, local ordinances, utility company regulations, and Contract Documents, the most stringent shall govern. Notify Architect in writing of such differences before performing work affected by such differences.

E. Identification:
 1. Motor and equipment name plates as well as applicable UL and AGA labels shall be in place when Product is turned over to Owner.
 2. Materials shall bear Manufacturer’s name and trade name. Equipment and materials of same general type shall be of same make throughout work to provide uniform appearance, operation, and maintenance.

1.5 OPERATION AND MAINTENANCE DATA

A. Summary:
 1. This Section includes administrative and procedure requirements for preparing operation and maintenance manuals, including the following:
 a. Operation manuals for systems, subsystems, and equipment.
b. Maintenance manuals for the care and maintenance of products, materials, finishes, systems and equipment.

B. Submittals:
 1. Manual: Submit one copy of each manual in final form at least 15 days before final inspection. Architect will return copy with comments within 15 days after final inspection.
 a. Correct or modify each manual to comply with Architect’s comments. Submit 3 copies of each corrected manual within 15 days of receipt of Architect’s comments.

PART 2 - PRODUCTS

2.1 EXAMINATION:

A. Site Inspection:
 1. Examine premises to understand conditions that may affect performance of work of this Division before submitting proposals for this work. Examine adjoining work on which mechanical work is dependent for efficiency and report work that requires correction.
 2. No subsequent allowance for time or money will be considered for any consequence related to failure to examine site conditions.

B. Drawings:
 1. Plumbing and Mechanical Drawings show general arrangement of piping, ductwork, equipment, etc. Follow as closely as actual building construction and work of other trades will permit.
 2. Consider Architectural and Structural Drawings part of this work insofar as these drawings furnish information relating to design and construction of building. These drawings take precedence over Plumbing and Mechanical Drawings.
 3. Because of scale of Drawings, it is not possible to indicate all offsets, fittings, and accessories that may be required. Investigate structural and finish conditions affecting this work and arrange work accordingly, providing such fittings, valves, and accessories required to meet conditions.

C. Ensure that items to be furnished fit space available. Make necessary field measurements to ascertain space requirements including those for connections and furnish and install equipment of size and shape so final installation shall suit true intent and meaning of Contract Documents. If approval is received by Addendum or Change Order to use other than originally specified items, be responsible for specified capacities and for ensuring that items to be furnished will fit space available.

2.2 PREPARATION:

A. Check that slots and openings provided under other Divisions through floors, walls, ceilings, and roofs are properly located. Perform cutting and patching caused by neglecting to coordinate with Divisions providing slots and openings at no additional cost to Owner.

B. Changes Due to Equipment Selection:
 1. Where equipment specified or otherwise approved requires different arrangement or connections from that shown in Contract Documents, submit drawings, if requested by Architect, showing proposed installations.
 2. If proposed changes are approved, install equipment to operate properly and in harmony with intent of Contract Documents. Make incidental changes in piping, ductwork, supports, installation, wiring, heaters, panelboards, and as otherwise necessary.
 3. Provide any additional motors, valves, controllers, fittings, and other additional equipment required for proper operation of the system resulting from selection of equipment, including all required changes in affected trades.
4. Be responsible for the proper location of roughing-in and connections provided under other Divisions.

2.3 REPAIR/RESTORATION:

A. Each Section of this Division shall bear expense of cutting, patching, repairing, and replacing of work of other Sections required because of its fault, error, tardiness, or because of damage done by it.
 1. Patch and repair walls, floors, ceilings, and roofs with materials of same quality and appearance as adjacent surfaces unless otherwise shown.
 2. Surface finishes shall exactly match existing finishes of same materials.

B. Cutting, patching, repairing, and replacing pavements, sidewalks, roads, and curbs to permit installation of work of this Division is responsibility of Section installing work.

2.4 CLEANING:

A. Clean exposed piping, ductwork, equipment, and fixtures. Remove stickers from fixtures and adjust flush valves.

B. No more than one week before Final Inspection, flush out bearings and clean other lubricated surfaces with flushing oil. Provide best quality and grade of lubricant specified by Equipment Manufacturer.

C. Replace filters in equipment for moving air with new filters of specified type no more than one week before Final Inspection.

2.5 PIPING INSTALLATION:

A. Interface With Other Work:
 1. Furnish sleeves, inserts, supports, and equipment that are to be installed by others in sufficient time to be incorporated into construction as work proceeds. Locate these items and see they are properly installed.

B. Furnish and install complete system of piping, valved as indicated or as necessary to completely control entire apparatus.
 1. Pipe drawings are diagrammatic and indicate general location and connections. Piping may have to be offset, lowered, or raised as required or directed at site. This does not relieve this Division from responsibility for proper erection of systems of piping in every respect.
 2. Arrange piping to not interfere with removal of other equipment, ducts, or devices, or block access to doors, windows, or access openings.
 a. Arrange so as to facilitate removal of tube bundles.
 b. Provide accessible flanges or ground joint unions, as applicable for type of piping specified, at connections to equipment and on bypasses.
 1) Make connections of dissimilar metals with di-electric unions.
 2) Install valves and unions ahead of traps and strainers. Provide unions on both sides of traps.
 c. Do not use reducing bushings, street elbows, bull head tees, close nipples, or running traps.
 d. Do not use reducing bushings, street elbows, bull head tees, close nipples, or running couplings.
 e. Install piping systems so they may be easily drained. Provide drain valves at low points and manual air vents at high points in hot water heating and cooling water piping.
 f. Install piping to insure noiseless circulation.
g. Place valves and specialties to permit easy operation and access. Valves shall be regulated, packed, and glands adjusted at completion of work before final acceptance.

3. Do not install piping in shear walls.

C. Properly support piping and make adequate provisions for expansion, contraction, slope and anchorage.
 1. Cut piping accurately for fabrication to measurements established at site. Remove burr and cutting slag from pipes.
 2. Work piping into place without springing or forcing. Make piping connections to pumps and other equipment without strain at piping connection. Remove bolts in flanged connections or disconnect piping to demonstrate that piping has been so connected, if requested.
 3. Make changes in direction with proper fittings.
 4. Except for underground pipe, suspend piping from roof trusses or clamp to vertical walls using Unistrut and clamps. Do not hang pipe from other pipe, equipment, or ductwork. Laying of piping on any building element is not allowed.
 5. Supports for Horizontal Piping:
 a. Support metal piping at 96 inches mm on center maximum for pipe 1-1/4 inches or larger and 72 inches on center maximum for pipe 1-1/8 inch or less.
 b. Support thermoplastic pipe at 48 inches on center maximum.
 c. Provide support at each elbow. Install additional support as required.
 6. Supports for Vertical Piping:
 a. Place riser clamps at each floor or ceiling level.
 b. Securely support clamps by structural members, which in turn are supported directly from building structure.
 c. Provide clamps as necessary to brace pipe to wall.
 7. Insulate hangers for copper pipe from piping by means of at least two layers of Scott 33 plastic tape.
 8. Expansion of Thermoplastic Pipe:
 a. Provide for expansion in every 30 feet of straight run.
 b. Provide 12 inch offset below roof line in each vent line penetrating roof.

D. Provide sleeves around pipes passing through concrete or masonry floors, walls, partitions, or structural members. Do not place sleeves around soil, waste, vent, or roof drain lines passing through concrete floors on grade. Seal sleeves with specified sealants.
 1. Sleeves through floors shall extend 1/4 inch above floor finish in mechanical equipment rooms above basement floor. In other rooms, sleeves shall be flush with floor.
 2. Sleeves through floors and foundation walls shall be watertight.

E. Provide spring clamp plates (escutcheons) where pipes run through walls, floors, or ceilings and are exposed in finished locations of building. Plates shall be chrome plated heavy brass of plain pattern and shall be set tight on pipe and to building surface.

2.6 PIPE, TUBE, AND FITTINGS

A. Refer to individual Division 23 piping Sections for pipe, tube, and fitting materials and joining methods.

B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.7 JOINING MATERIALS

A. Refer to individual Division 23 piping Sections for special joining materials not listed below.
B. Pipe-Flange Gasket Materials: ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.

C. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.

D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

E. Brazing Filler Metals: AWS A5.8, BCuP Series or BAg1, unless otherwise indicated.

G. Solvent Cements for Joining Plastic Piping:
 1. CPVC Piping: ASTM F 493.
 2. PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.

2.8 DIELECTRIC FITTINGS

A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.

B. Insulating Material: Suitable for system fluid, pressure, and temperature.

C. Dielectric Unions: Factory-fabricated, union assembly, for 250-psig minimum working pressure at 180 deg F.

D. Dielectric Flanges: Factory-fabricated, companion-flange assembly, for 150- or 300-psig minimum working pressure as required to suit system pressures.

E. Dielectric Couplings: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining; threaded ends; and 300-psig minimum working pressure at 225 deg F.

F. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig minimum working pressure at 225 deg F.

2.9 MECHANICAL SLEEVE SEALS

A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.

B. Sealing Elements: EPDM interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.

C. Pressure Plates: Carbon steel. Include two for each sealing element.

D. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.10 SLEEVES

A. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.
C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 1. Underdeck Clamp: Clamping ring with set screws.

2.11 ESCUTCHEONS

A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.

B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chrome-plated finish.

2.12 GROUT

A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 2. Design Mix: 5000-psi, 28-day compressive strength.

2.13 OPERATION AND MAINTENANCE MANUALS

A. General:
 1. Organization: Unless otherwise indicated, organize each manual into a separate section for each system and subsystem, and a separate section for each piece of equipment not part of a system. Each manual shall contain a title page, table of contents, and manual contents.
 2. Title Page: Enclose title page in transparent plastic sleeve. Include the following information.
 a. Subject matter included in manual.
 b. Name and address of Project.
 c. Name and address of Owner.
 d. Date of submittal.
 e. Name, address, and telephone number of Contractor.
 f. Name and address of Architect.
 g. Cross-reference to related systems in other operation and maintenance manuals.
 3. Table of Contents: List each product included in manual, identified by product name, indexed to the content of the volume, and cross-referenced to Specification Section number in Project Manual.
 4. Manual Contents: Organize into sets of manageable size. Arrange contents alphabetically by system, subsystem, and equipment. If possible, assemble instructions for subsystems, equipment, and components of one system into a single binder.
 a. Binders: Heavy-duty, 3-ring, vinyl-covered, loose-leaf binders, in thickness necessary to accommodate contents, sized to hold 8-1/2 by-11-inch paper; with clear plastic sleeve on spine to hold label describing contents and with pockets inside covers to hold folded oversize sheets.
 1) Identify each binder on front and spine, with printed title "OPERATION AND MAINTENANCE MANUAL," Project title or name, and subject matter of contents. Indicate volume number for multiple-volume sets.
 b. Dividers: Heavy-paper dividers with plastic-covered tabs for each section. Mark each tab to indicate contents. Include typed list of products and major components
of equipment included in the section on each divider, cross-referenced to Specification Section number and title of Project Manual.

c. Protective Plastic Sleeves: Transparent plastic sleeves designed to enclose diagnostic software diskettes for computerized electronic equipment.

d. Drawings: Attach reinforced, punched binder tabs on drawings and bind with text.
 1) If oversize drawings are necessary, fold drawings to same size as text pages and use as foldouts.
 2) If drawings are too large to be used as foldouts, fold and place drawings in labeled envelopes and bind envelopes in rear of manual. At appropriate locations in manual, insert typewritten pages indicating drawing titles, descriptions of contents, and drawing locations.

5. Include copies of approved shop drawings and copies of warranties required in individual Sections of Division 23.

B. Operation Manuals
1. Content: In addition to requirements in this Section, include operation data required in individual Specification Sections and equipment descriptions, operating procedures, operating logs, wiring and control diagrams, and license requirements.

2. Descriptions: Include the following:
 a. Product name and model number.
 b. Manufacturer’s name.
 c. Equipment identification with serial number of each component.
 d. Equipment function.
 e. Operating characteristics.
 f. Limiting conditions.
 g. Performance curves.
 h. Engineering data and tests.
 i. Complete nomenclature and number of replacement parts.

3. Operation Procedures: Include start-up, break-in, and control procedures; stopping and normal shutdown instructions; routine, normal, seasonal, and weekend operating instructions; and required sequences for electric or electronic systems.

4. Systems and Equipment Controls: Describe the sequence of operation, and diagram controls as installed.

C. Product Maintenance Manual
1. Content: Organize manual into a separate section for each product, material, and finish. Include source information, product information, maintenance procedures, repair materials and sources, and warranties and bonds, as described below.

2. Source Information: List each product included in manual, identified by product name and arranged to match manual’s table of contents. For each product, list name, address, and telephone number of installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual.

3. Product Information: Include the following, as applicable:
 a. Product name and model number.
 b. Manufacturer’s name.
 c. Color, pattern, and texture.
 d. Material and chemical composition.
 e. Reordering information for specially manufactured products.

5. Repair Materials and Sources: Include lists of materials and local sources of materials and related services.
6. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.

D. Systems and Equipment Maintenance Manual
 1. Content: For each system, subsystem, and piece of equipment not part of a system, include source information, manufacturer’s maintenance documentation, maintenance procedures, maintenance and service schedules, spare parts list and source information, maintenance service contracts, and warranty and bond information, as described below.
 2. Source Information: List each system, subsystem, and piece of equipment included in manual, identified by product name and arranged to match manual’s table of contents. For each product, list name, address, and telephone number of installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual.
 3. Manufacturer’s Maintenance Documentation: Manufacturer’s maintenance documentation including maintenance instructions, drawings and diagrams for maintenance, nomenclature of parts and components, and recommended spare parts for each component part or piece of equipment.
 4. Maintenance Procedures: Include test and inspection instructions, troubleshooting guide, disassembly instructions, and adjusting instructions, and demonstration and training videotape if available, that detail essential maintenance procedures.
 5. Maintenance and Service Schedules: Include service and lubrication requirements, list of required lubricants for equipment, and separate schedules for preventive and routine maintenance and service with standard time allotment.
 6. Spare Parts List and Source Information: Include lists of replacement and repair parts, with parts identified and cross-referenced to manufacturers’ maintenance documentation and local sources of maintenance materials and related services.
 7. Maintenance Service Contracts: Include copies of maintenance agreements with name and telephone number of service agent.
 8. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.

PART 3 - EXECUTION

3.1 HVAC DEMOLITION

A. Refer to Division 01 Section "Cutting and Patching" and Division 02 Section "Selective Structure Demolition" for general demolition requirements and procedures.

B. Disconnect, demolish, and remove HVAC systems, equipment, and components indicated to be removed.
 1. Piping to Be Removed: Remove portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material.
 2. Piping to Be Abandoned in Place: Drain piping and cap or plug piping with same or compatible piping material.
 3. Ducts to Be Removed: Remove portion of ducts indicated to be removed and plug remaining ducts with same or compatible ductwork material.
 4. Ducts to Be Abandoned in Place: Cap or plug ducts with same or compatible ductwork material.
 5. Equipment to Be Removed: Disconnect and cap services and remove equipment.
 6. Equipment to Be Removed and Reinstalled: Disconnect and cap services and remove, clean, and store equipment; when appropriate, reinstall, reconnect, and make equipment operational.
 7. Equipment to Be Removed and Salvaged: Disconnect and cap services and remove equipment and deliver to Owner.
C. If pipe, insulation, or equipment to remain is damaged in appearance or is unserviceable, remove damaged or unserviceable portions and replace with new products of equal capacity and quality.

D. Building owner shall have first right of refusal for any equipment or material that is to be removed.

3.2 PIPING SYSTEMS - COMMON REQUIREMENTS

A. Install piping according to the following requirements and Division 23 Sections specifying piping systems.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

F. Install piping to permit valve servicing.

G. Install piping at indicated slopes.

H. Install piping free of sags and bends.

I. Install fittings for changes in direction and branch connections.

J. Install piping to allow application of insulation.

K. Select system components with pressure rating equal to or greater than system operating pressure.

L. Install escutcheons for penetrations of walls, ceilings, and floors.

M. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.

N. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
1. Install steel pipe for sleeves smaller than 6 inches in diameter.
2. Install cast-iron "wall pipes" for sleeves 6 inches and larger in diameter.
3. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
O. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 07 Section “Penetration Firestopping” for materials.

P. Verify final equipment locations for roughing-in.

Q. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

3.3 PIPING JOINT CONSTRUCTION

A. Join pipe and fittings according to the following requirements and Division 23 Sections specifying piping systems.

B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.

F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

G. Welded Joints: Construct joints according to AWS D10.12, using processes and welding operators according to Part 1 "Quality Assurance" Article.

H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.4 PIPING CONNECTIONS

A. Make connections according to the following, unless otherwise indicated:
 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.
 3. Dry Piping Systems: Install dielectric unions and flanges to connect piping materials of dissimilar metals.

3.5 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.
B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.

C. Install HVAC equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.

D. Install equipment to allow right of way for piping installed at required slope.

3.6 CONCRETE BASES

A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.
 1. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit.
 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of the base.
 3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
 4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 5. Install anchor bolts to elevations required for proper attachment to supported equipment.
 6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
 7. Use 3000-psi, 28-day compressive-strength concrete and reinforcement as specified in Division 03 Section "Cast-in-Place Concrete (Limited Applications)."

3.7 ERECTION OF METAL SUPPORTS AND ANCHORAGES

A. Refer to Division 05 Section "Metal Fabrications" for structural steel.

B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor HVAC materials and equipment.

C. Field Welding: Comply with AWS D1.1.

3.8 GROUTING

A. Mix and install grout for HVAC equipment base bearing surfaces, pump and other equipment base plates, and anchors.

B. Clean surfaces that will come into contact with grout.

C. Provide forms as required for placement of grout.

D. Avoid air entrapment during placement of grout.

E. Place grout, completely filling equipment bases.

F. Place grout on concrete bases and provide smooth bearing surface for equipment.

G. Place grout around anchors.

H. Cure placed grout.
3.9 **O & M MANUAL PREPREPARATION**

A. Product Maintenance Manual: Assemble a complete set of maintenance data indicating care and maintenance of each product, material and finish incorporated into the Work.

B. Operation and Maintenance Manuals: Assemble a complete set of operation and maintenance data indicating operation and maintenance of each system, subsystem, and piece of equipment not part of a system.

C. Manufacturer’s Data: Where manuals contain manufacturer’s standard printed data, include only sheets pertinent to product or component installed. Mark each sheet to identify each product or component incorporated into the Work. If data includes more than one item in a tabular format, identify each item using appropriate references from the Contract Documents. Identify data applicable to the Work and delete references to information not applicable.

D. Drawings: Prepare drawings supplementing manufacturers’ printed data to illustrate the relationship of component parts of equipment and systems and to illustrate control sequence and flow diagrams. Coordinate these drawings with information contained in Record Drawings to ensure correct illustration of completed installation.
 1. Do not use original Project Record Documents as part of operation and maintenance manuals.

E. Comply with Division 01 Section “Closeout Procedures” for schedule for submitting operation and maintenance documentation.

END OF SECTION 230500
SECTION 230519 - METERS AND GAGES FOR HVAC PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Liquid-in-glass thermometers.
 2. Thermowells.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings:
 1. Include diagrams for power, signal, and control wiring.

1.3 INFORMATIONAL SUBMITTALS

A. Product Certificates: For each type of meter and gage.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

PART 2 - PRODUCTS

2.1 LIQUID-IN-GLASS THERMOMETERS

A. Metal-Case, Industrial-Style, Liquid-in-Glass Thermometers:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ashcroft Inc.
 b. Flo Fab Inc.
 c. Marsh Bellofram
 d. Miljoco Corporation
 e. Trellice, H. O. Co.
 f. Watts; a Watts Water Technologies company
 g. Weiss Instruments, Inc.
 h. Weksler Glass Thermometer Corp.
 3. Case: Cast aluminum; 9-inch nominal size unless otherwise indicated.
 4. Case Form: Adjustable angle unless otherwise indicated.
 5. Tube: Glass with magnifying lens and blue or red organic liquid.
 6. Tube Background: Nonreflective aluminum with permanently etched scale markings graduated in deg F.
 7. Window: Glass or plastic.
 8. Stem: Aluminum and of length to suit installation.
 a. Design for Thermowell Installation: Bare stem.
 10. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.
2.2 THERMOWELLS

A. Thermowells:
 2. Description: Pressure-tight, socket-type fitting made for insertion in piping tee fitting.
 3. Material for Use with Copper Tubing: CNR or CUNI.
 4. Material for Use with Steel Piping: CRES.
 5. Type: Stepped shank unless straight or tapered shank is indicated.
 6. External Threads: NPS 1/2, NPS 3/4, or NPS 1, ASME B1.20.1 pipe threads.
 7. Internal Threads: 1/2, 3/4, and 1 inch, with ASME B1.1 screw threads.
 8. Bore: Diameter required to match thermometer bulb or stem.
 9. Insertion Length: Length required to match thermometer bulb or stem.
 10. Lagging Extension: Include on thermowells for insulated piping and tubing.
 11. Bushings: For converting size of thermowell's internal screw thread to size of thermometer connection.

B. Heat-Transfer Medium: Mixture of graphite and glycerin.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install thermowells with socket extending a minimum of 2 inches into fluid and in vertical position in piping tees.

B. Install thermowells of sizes required to match thermometer connectors. Include bushings if required to match sizes.

C. Install thermowells with extension on insulated piping.

D. Fill thermowells with heat-transfer medium.

E. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions.

F. Install thermometers in the following locations:
 1. Inlet and outlet of each hydronic zone.
 2. Inlet and outlet of each hydronic boiler.
 3. Inlet and outlet of each hydronic coil in air-handling units.

3.2 CONNECTIONS

A. Install meters and gages adjacent to machines and equipment to allow space for service and maintenance of meters, gages, machines, and equipment.

3.3 ADJUSTING

A. After installation, calibrate meters according to manufacturer's written instructions.

B. Adjust faces of meters and gages to proper angle for best visibility.

3.4 THERMOMETER SCHEDULE

A. Thermometers at inlet and outlet of each hydronic boiler shall be one of the following:
 1. Direct-mounted, metal-case, vapor-actuated type.
2. Industrial-style, liquid-in-glass type.

B. Thermometers at inlet and outlet of each hydronic coil in air-handling units and built-up central systems shall be one of the following:
 1. Direct-mounted, metal-case, vapor-actuated type.
 2. Industrial-style, liquid-in-glass type.

C. Thermometer stems shall be of length to match thermowell insertion length.

3.5 THERMOMETER SCALE-RANGE SCHEDULE

A. Scale Range for Heating, Hot-Water Piping: 0 to 250 deg F.

END OF SECTION 230519
SECTION 230523.13 - BUTTERFLY VALVES FOR HVAC PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 2. Chainwheels.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of valve.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. ASME Compliance:
 1. ASME B16.1 for flanges on iron valves.
 2. ASME B16.5 for flanges on steel valves.
 3. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 4. ASME B31.9 for building services valves.

B. AWWA Compliance: Comply with AWWA C606 for grooved-end connections.

C. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

D. Valve Sizes: Same as upstream piping unless otherwise indicated.

E. Valve Actuator Types:
 1. Gear Actuator: For valves NPS 8 and larger.
 3. Chainwheel: Device for attachment to gear, stem, or other actuator of size and with chain for mounting height, according to "Installation of Valves" Article.

F. Valves in Insulated Piping: Provide with 2-inch extended neck stems.

2.2 HIGH-PERFORMANCE BUTTERFLY VALVES

A. Single-Flange (Lug-Type), High-Performance Butterfly Valves, Class 150:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ABZ Valve and Controls.
 b. Apollo Valves; a part of Aalberts Integrated Piping Systems.
 c. Bray International, Inc.
 d. DeZURIK.
 e. Emerson Commercial & Residential Solutions; Emerson Electric Co.
 f. Flowseal; Crane Energy Flow Solutions.
 g. Hammond Valve.
 h. Jamesbury; Metso.
 i. Lance Valves.
j. Milwaukee Valve Company
k. Stockham; a Crane Co. brand.
l. XOMOX; Crane ChemPharma & Energy.

2. Standard: MSS SP-68.
3. CWP Rating: 285 psig at 100 deg F.
4. Body Design: Single flange (lug type), suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
5. Body Material: Carbon or stainless steel.
7. Stem: Stainless steel; offset from seat plane.
8. Disc: Type 316 stainless steel.

2.3 CHAINWHEELS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Babbit Steam Specialty Co.
 2. Roto Hammer Industries; Rotork.
 3. Trumbull Industries.

B. Description: Valve actuation assembly with sprocket rim, chain guides, chain, and attachment brackets for mounting chainwheels directly to hand wheels.
 1. Sprocket Rim with Chain Guides: Ductile or cast iron, of type and size required for valve. Include zinc or epoxy coating.
 2. Chain: Hot-dip, galvanized steel, of size required to fit sprocket rim.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine mating flange faces for damage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

D. Do not attempt to repair defective valves; replace with new valves. Remove defective valves from site.

3.2 INSTALLATION OF VALVES

A. Install valves with unions or flanges at each piece of equipment arranged to allow space for service, maintenance, and equipment removal without system shutdown.

B. Provide support of piping adjacent to valves such that no force is imposed upon valves.

C. Locate valves for easy access.
D. Install valves in horizontal piping with stem at or above center of pipe.

E. Install valves in position to allow full valve actuation movement.

F. Install chainwheels on manual actuators for butterfly valves NPS 4 and larger and more than 96 inches above floor. Extend chains to 60 inches above finished floor.

G. Valve Tags: Comply with requirements in Section 230553 “Identification for HVAC Piping and Equipment” for valve tags and schedules.

H. Adjust or replace valve packing after piping systems have been tested and put into service, but before final adjusting and balancing. If leakage cannot be repaired, replace valve.

3.3 CHILLED-WATER VALVE SCHEDULE

A. Pipe NPS 2-1/2 and Larger:
 1. High-Performance Butterfly Valves: Single flange, carbon-steel body, and Class 150.

3.4 HEATING-WATER VALVE SCHEDULE

A. Pipe NPS 2-1/2 and Larger:
 1. High-Performance Butterfly Valves: Single flange, carbon-steel body, and Class 150.

END OF SECTION 230523.13
SECTION 230529 - HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Metal pipe hangers and supports.
 2. Trapeze pipe hangers.
 3. Thermal-hanger shield inserts.
 4. Fastener systems.
 5. Equipment supports.

B. Related Requirements:
 1. Section 230548 "Vibration and Seismic Controls for HVAC" for vibration isolation devices.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.3 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.4 QUALITY ASSURANCE

A. Structural-Steel Welding Certification: Certify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Certifications: Certify procedures and operators according to ASME Boiler and Pressure Vessel Code, Section IX.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Structural Performance: Hangers and supports for HVAC piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
 1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
 3. Design seismic-restraint hangers and supports for piping and equipment.

2.2 METAL PIPE HANGERS AND SUPPORTS

A. Carbon-Steel Pipe Hangers and Supports:
 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 2. Galvanized Metallic Coatings: Pregalvanized, hot-dip galvanized, or electro-galvanized.
 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

B. Stainless Steel Pipe Hangers and Supports:
 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 2. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

C. Copper Pipe and Tube Hangers:
 1. Description: MSS SP-58, Types 1 through 58, copper-plated steel, factory-fabricated components.

2.3 TRAPEZE PIPE HANGERS

A. Description: MSS SP-58, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.4 THERMAL-HANGER SHIELD INSERTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Buclaroos, Inc.
 2. CADDY; a brand of nVent
 3. Carpenter & Peterson, Inc.
 4. KB Enterprise.
 5. National Pipe Hanger Corporation
 6. Pipe Shields Inc.
 7. Piping Technology & Products, Inc.
 8. Rilco Manufacturing Co., Inc.
 9. Value Engineered Products, Inc.

B. Insulation-Insert Material for Cold Piping: ASTM C552, Type II cellular glass with 100-psi or ASTM C591, Type VI, Grade 1 polyisocyanurate with 125-psi minimum compressive strength and vapor barrier.

C. Insulation-Insert Material for Hot Piping: ASTM C552, Type II cellular glass with 100-psi or ASTM C591, Type VI, Grade 1 polyisocyanurate with 125-psi minimum compressive strength.

D. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

E. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

F. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.5 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. Hiti, Inc.
b. ITW Ramset/Red Head; Illinois Tool Works, Inc.
c. MKT Fastening, LLC
d. Simpson Strong-Tie Co., Inc.

B. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. B-line, an Eaton business.
 b. Empire Tool and Manufacturing Co., Inc.
 c. Hilti, Inc.
 d. ITW Ramset/Red Head; Illinois Tool Works, Inc.
 e. MKT Fastening, LLC

2.6 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.7 MATERIALS

A. Aluminum: ASTM B221.

B. Carbon Steel: ASTM A1011/A1011M.

C. Structural Steel: ASTM A36/A36M, carbon-steel plates, shapes, and bars; black and galvanized.

D. Stainless Steel: ASTM A240/A240M.

E. Grout: ASTM C1107/C1107M, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping materials and installation for penetrations through fire-rated walls, ceilings, and assemblies.

B. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

3.2 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-58. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.
B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-58. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
 2. Field fabricate from ASTM A36/A36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.

C. Fiberglass Pipe-Hanger Installation: Comply with applicable portions of MSS SP-58. Install hangers and attachments as required to properly support piping from building structure.

D. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled strut systems.

E. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

F. Fastener System Installation:
 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

G. Pipe Stand Installation:
 1. Pipe Stand Types except Curb-Mounted Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.
 2. Curb-Mounted-Type Pipe Stands: Assemble components or fabricate pipe stand and mount on permanent, stationary roof curb. See Section 077200 "Roof Accessories" for curbs.

H. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

J. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

K. Install lateral bracing with pipe hangers and supports to prevent swaying.

L. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

M. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

N. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

O. Insulated Piping:
1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.

2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.

5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.

6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.3 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.

B. Grouting: Place grout under supports for equipment and make bearing surface smooth.

C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.4 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.

B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.
3.5 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.6 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.

B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A780/A780M.

3.7 HANGER AND SUPPORT SCHEDULE

A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.

B. Comply with MSS SP-58 for pipe-hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.

D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use carbon-steel metal trapeze pipe hangers and metal framing systems and attachments for general service applications.

F. Use stainless steel pipe hangers and stainless steel or corrosion-resistant attachments for hostile environment applications.

G. Use copper-plated pipe hangers and copper or stainless steel attachments for copper piping and tubing.

H. Use padded hangers for piping that is subject to scratching.

I. Use thermal-hanger shield inserts for insulated piping and tubing.

J. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F, pipes NPS 4 to NPS 24, requiring up to 4 inches of insulation.
 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.
 4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 if little or no insulation is required.
5. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.
6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated, stationary pipes NPS 3/4 to NPS 8.
7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
10. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 8.
11. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 3.
12. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
14. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
16. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.
17. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction might occur.
18. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes NPS 2-1/2 to NPS 24, from single rod if horizontal movement caused by expansion and contraction might occur.
19. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is unnecessary.
20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes NPS 2 to NPS 24 if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is unnecessary.
21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes NPS 2 to NPS 30 if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.

K. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.

L. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.
M. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
 6. C-Clamps (MSS Type 23): For structural shapes.
 7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
 8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
 9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
 10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
 11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
 12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
 c. Heavy (MSS Type 33): 3000 lb.
 13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
 14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
 15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.

N. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

O. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
 2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
 3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
 4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
 5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from hanger.
 6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.
7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from trapeze support.

8. Constant Supports: For critical piping stress and if necessary, to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
 a. Horizontal (MSS Type 54): Mounted horizontally.
 b. Vertical (MSS Type 55): Mounted vertically.
 c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.

P. Comply with MSS SP-58 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

Q. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

END OF SECTION 230529
SECTION 230548 - VIBRATION AND SEISMIC CONTROLS FOR HVAC

PART 1 - GENERAL

1.1 SUMMARY

A. Includes But Not Limited To:
 1. Requirements for anchorage and seismic restraint systems and vibration isolation systems for HVAC equipment.

B. Related Requirements:
 1. Furnishing and installing of seismic restraint and vibration isolation systems is by installer of equipment requiring such systems.
 a. Manufacturers of equipment specified to receive seismic restraint shall provide product data needed for calculation of seismic restraint needs. This information shall include, but not be limited to, equipment dimensions, dimensioned anchor points, operating weight, and center of gravity.

C. Section Includes:
 1. Restraints - rigid type.
 2. Restraints - cable type.
 3. Restraint accessories.
 5. Concrete inserts.

1.2 PERFORMANCE REQUIREMENTS

A. Wind-Restraint Loading:
 1. Basic Wind Speed: As per AHJ.
 2. Building Classification Category as defined in ASCE 7-10 Table 1.5.1: III.
 3. Minimum 10 lb/sq. ft. multiplied by the maximum area of the HVAC component projected on a vertical plane that is normal to the wind direction, and 45 degrees either side of normal.

B. Seismic-Restraint Loading:
 1. Site Class as Defined in ASCE.
 a. Where the soil properties are not known in sufficient detail to determine the site class. Site Class D shall be used unless the authority having jurisdiction or geotechnical data determine Site Class E or F soils are present at the site.
 2. Assigned seismic Use Group or Building Category as Defined in the IBC: [I] [II] [III] [IV].
 3. Risk Category 1:
 a. Buildings and other structures that represent a low risk to human life in the event of failure.
 4. Risk Category II:
 a. All buildings and other structures except those listed in Risk Categories I, III, and IV.
 5. Risk Category III:
 a. Buildings and other structures, the failure of which could pose a substantial risk to human life.
 b. Buildings and other structures not included in Risk Category IV with potential to cause a substantial economic impact and/or mass disruption of day-to-day civilian life in the event of failure.
 c. Buildings and other structures not included in Risk Category IV (including but, not limited to, facilities that manufacture, process, handle, store, use or dispose of...
such substances as hazardous fuels, hazardous chemicals, hazardous waste, or explosives) containing toxic or explosive substances where their quantity exceeds a threshold quantity established by the authority having jurisdiction and is sufficient to pose a threat to the public if released.

6. Risk Category IV:
 a. Buildings and other structures designated at essential facilities.
 b. Buildings and other structures, the failure of which could pose a substantial hazard to the community.
 c. Buildings and other structures (including, but not limited to, facilities that manufacture, process, handle, store, use, or dispose of such substances as hazardous fuels, hazardous chemicals, or hazardous waste) continuing sufficient quantities of highly toxic substances where the quantity exceeds a threshold quantity established by the authority having jurisdiction to be dangerous to the public if released and is sufficient to pose a threat to the public if released.
 d. Buildings and other structures required to maintain the functionality of other Risk Category IV Structures.
 e. Component Importance Factor (I_P) as defined in ASCE 7-10 Chapter 13, Section 13.1.3. 1.0.
 f. Component Response Modification Factor (R_P) as defined in ASCE, Section 7-10, Table 13.6.1.
 g. Component Amplification Factor (A_P) as defined in ASCE 7-10, Table 13.6.1.
 h. 0.2 sec Spectral Response Acceleration 5% of Critical Damping, Site Class B, (S_s) as defined in ASCE 7-10, Chapter 22.
 i. 1 sec Design Spectral Response Acceleration, 5% of Critical Damping, Site Class B, (S_1) as defined in ASCE 7-10, Chapter 22.

C. General Requirements:
 1. Install full line size flexible pipe connectors at the inlet and outlet of each pump, cooling tower, condenser, chiller, cooling connections and where shown on the drawings. All connectors shall be suitable for use at the temperature, pressure, and service encountered at the point of installation and operation. End fitting connectors shall conform to the pipefitting schedule. Control rods or protective braid must be used to limit elongated to 3/8 inch. Flexible connectors shall not be required for suspended in-line pumps.
 2. Unless otherwise specified, all mechanical equipment, pipe, and duct shall be restrained to resist seismic forces. Restraints shall maintain equipment, piping and duct work in a captive position. Restraint devices shall be designed and selected to meet the seismic requirements as defined in the 2018 Edition of the International Building Code, ASCE 7-10 and local jurisdiction building code. Equipment importance factors are determined as follows:
 a. The Component Importance Factor (I_P) shall be taken as 1.0 unless the Component Importance Factor (I_P) must be taken as 1.5
 b. The Component Importance Factor (I_P) shall be taken as 1.5 if:
 1) The component is required to function for the life-safety purposes after an earthquake.
 2) The component conveys, supports, or otherwise contains toxic, highly toxic, or explosive substances where the quantity of the material exceeds a threshold quantity established by the authority having jurisdiction and is sufficient to pose a threat to the public if released.
 3) The component is in or attached to a Risk Category IV structure and it is needed for continued operation of the facility or its failure could impair the continued operation of the facility.
 4) The component conveys, supports, or otherwise contains hazardous substances and is attached to a structure or portion thereof classified by the authority having jurisdiction as a hazardous occupancy.
3. Components that are installed in-line with the duct system and have an operating weight greater than 75 lbs. such as fans, heat exchangers, and humidifiers, shall be supported and laterally braced independent of the duct system.
4. Appurtenances such as dampers, louvers, and diffusers shall be positively attached with mechanical fasteners.
5. Unbraced piping attached to in-line equipment shall be provided with adequate flexibility to accommodate the seismic relative displacements.
6. Piping that is not ASME pressure piping or NFPA 13 fire protection sprinkler piping, and mechanical components with hazardous substances that are assigned a component importance factor, \(I_p \) of 1.5 shall be designed including consideration of service loads based on the following allowable stresses:
 a. For piping constructed with ductile materials (e.g., steel, aluminum, or copper), 90 percent of the minimum specified yield strength.
 b. For threaded connections in piping constructed with ductile materials, 10 percent of the material minimum specified tensile strength.
 c. For piping constructed with nonductile materials (e.g., cast iron or ceramics), 10 percent of the material minimum specified tensile strength.
 d. For threaded connections in piping constructed with nonductile materials, 8 percent of the material minimum specified tensile strength.
7. Piping not detailed to accommodate the seismic relative displacements at connections to other components shall be provided with connections having sufficient flexibility to avoid failure of the connection between the components.

D. Seismic Resistant Shall Not Be Required for the Following:
1. Temporary or moveable equipment.
2. Mechanical and electrical components in Seismic Design Category A and B.
3. Mechanical components in Seismic Design Category C provided that the Component Importance Factor (\(I_p \)) is equal to 1.0.
4. Mechanical components in Seismic Design Categories D, E, or F where all of the following apply:
 a. The component importance factor (\(I_p \)) is equal to 1.0.
 b. The component is positively attached to the structure.
 c. Flexible connections are provided between the component and associated ductwork, piping and conduit and either:
 1) The component weighs 400 lbs or less and has a center of mass located 4 ft. or less above the adjacent floor level or
 2) The component weighs 20 lbs or less or, in the case of a distributed system 5 lb/ft. or less.
5. HVAC ductwork, not designed to carry toxic, or flammable gases or used for smoke control where either –
 a. Trapeze assemblies are used to support ductwork and the total weight of the ductwork supported by trapeze assemblies is less than 10 lb/ft or
 b. The ductwork is supported by hangers and each hanger in the duct run is 12 inch, or less in length from the duct support point to the supporting structure. Where rod hangers are used, they shall be equipped with swivels to prevent in elastic bending in the rod.
6. HVAC ductwork, not designed to carry toxic, highly toxic, or flammable gases or used for smoke control where provisions are made to avoid impact with larger ducts or mechanical components or to protect the ducts in the event of such impact and HVAC ducts have a cross-sectional area of less than 6 ft² or weigh 17 lb/ft or less.
7. Piping supported by trapeze assemblies where the total weight of the pipe on the trapeze is less than 10 lb/ft and no single pipe is larger than:
 a. 2” nominal pipe size in Seismic Design Category A, B, or C and \(I_p \) equal 1.0 or 1.5.
 b. 1” nominal pipe size in Seismic Design Category A, B, C, D, E or F and \(I_p \) equals 1.0 or 1.5.
c. 3" nominal pipe size in Seismic Design Category A, B, C, D, E, or F and Ip equals 1.0.

8. The piping is supported by individual hangers or trapeze assemblies and each hanger in the piping run is 12 inch or less in length from the top of the pipe or supported trapeze to the supporting structure. Where rod hangers are used, they shall be equipped with swivels, eye nuts, or other devices to prevent bending in the rod.

9. Piping having an Rp of 4.5 or greater is used and provisions are made to avoid impact with other structural or nonstructural components or to protect the piping in the event of such impact and the pipe is not larger than:
 a. 2" nominal pipe size in Seismic Design Category A, B, or C and Ip equals 1.0 or 1.5.
 b. 1" nominal pipe size in Seismic Design Category A, B, C, D, E, or F and Ip equals 1.0 or 1.5.
 c. 3" nominal pipe size in Seismic Design Category A, B, C, D, E, or F and Ip equals 1.0.

E. Special Certification of Designated Seismic Systems:
 1. Active mechanical equipment with a Component Importance Factor (Ip) of 1.5 and in Seismic Design Category C, D, E or F shall be certified by the manufacturer exclusively on the basis of approved shake table testing in accordance with ASCE 7-10 Section 13.2.5 or experience data in accordance with ASCE 7-10 Section 13.2.6.

F. Special Certification of Designated Seismic Systems shall not be required for:
 1. Inactive mechanical equipment with no parts, critical to the function of the equipment, that rotate, move mechanically, or are engaged during operation, such as pipes and ducts.
 2. Rugged mechanical equipment such as:
 a. Mechanical equipment that contains an electric motor less than or equal to hp or heat transfer capacity less than or equal to 200 MBH.
 b. Valves (not in cast iron housing, except for ductile cast iron).
 c. Pneumatic operators.
 d. Hydraulic operations.
 e. Horizontal and vertical pumps.
 f. Chiller, factory packaged unit.
 g. Air compressors.
 h. Refrigerators and freezers.

G. Manufacturer’s Responsibilities:
 1. Determine vibration isolation and seismic restraint sizes and locations.
 2. Provide piping, ductwork, and equipment isolation systems and seismic restraints as scheduled or specified.
 3. Provide installation instructions and shop drawings for all materials supplied under this section of the specifications.
 4. Provide calculations to determine restraint loads resulting from seismic forces required by the 2018 IBC and ASCE 7-10.
 a. Seismic calculations shall be certified by a licensed engineer in the employ of the seismic equipment manufacturer with a minimum of 5 years of experience.
 5. Provide seismic calculations for all vibration isolated floor or roof-mounted equipment 400 pounds or greater (20 pounds or greater Ip = 1.5), all suspended or wall mounted equipment 20 pounds or greater, and vibration isolated equipment 20 pounds or greater.
 6. Seismic restraint load ratings must be listed by ICC-ES (International Code Conference Evaluation Service), UL (Underwriters Laboratories) or other nationally recognized independent third party listing service that is acceptable to the authority having jurisdiction.
 7. Calculations and restraint device submittal drawings shall specify their anchorage to the structure:
a. Concrete anchors shall be seismically precertified in accordance with ACI 355.2.
b. Concrete anchor calculations shall be based on ICC-ES Reports and calculated in accordance with ACI 318-14 Chapter 17.
c. Concrete anchor calculations shall include:
 1) Concrete compressive strength and slab thickness.
 2) Concrete anchor diameter, nominal embedment depth and edge distance.
 3) Consideration of the effects of prying and eccentricities.
 4) Consideration of the seismic load effect over strength factor per ASCE 7-10 Supplement 1.
 5) All bolts shall be ASTM A307 or better.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings:
 1. Detail fabrication and assembly of equipment bases.
 2. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.

C. Delegated Design Submittals:
 1. For each seismic-restraint and wind-load protection device, including seismic-restrained mounting, pipe-riser resilient support, snubber, seismic restraint, seismic-restraint accessory, concrete anchor and insert, and restrained isolation roof-curb rail that is required by this Section or is indicated on Drawings, submit the following:
 a. Seismic and Wind-Load Restraint, and Vibration Isolation Base Selection: Select vibration isolators, seismic and wind-load restraints, and vibration isolation bases complying with performance requirements, design criteria, and analysis data.
 b. Riser Supports: Include riser diagrams and calculations showing anticipated expansion and contraction at each support point, initial and final loads on building structure, spring deflection changes, and seismic loads. Include certification by professional engineer that riser system was examined for excessive stress and that none exists.
 c. Concrete Anchors and Inserts: Include calculations showing anticipated seismic and wind loads. Include certification that device is approved by an NRTL for seismic reinforcement use.
 d. Seismic Design Calculations: Submit all input data and loading calculations prepared under "Seismic Design Calculations" Paragraph in "Performance Requirements" Article.
 e. Wind-Load Design Calculations: Submit all static and dynamic loading calculations prepared under "Wind-Load Design Calculations" Paragraph in "Performance Requirements" Article.
 f. Licensed Professional Engineer: All designated-design submittals for seismic- and wind-restraint calculations are to be signed and sealed by licensed professional engineer responsible for their preparation.
 2. Seismic- and Wind-Restraint Detail Drawing:
 a. Design Analysis: To support selection and arrangement of seismic and wind restraints. Include calculations of combined tensile and shear loads.
 b. Details: Indicate fabrication and arrangement. Detail attachments of restraints to restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices.
c. Coordinate seismic-restraint and vibration isolation details with wind-restraint details required for equipment mounted outdoors. Comply also with requirements in other Sections for equipment mounted outdoors.

3. All delegated design submittals for seismic- and wind-restraint detail Drawings are to be signed and sealed by licensed professional engineer responsible for their preparation.

4. Product Listing, Preapproval, and Evaluation Documentation: By an evaluation service member of ICC-ES, showing maximum ratings of restraint items and basis for approval (tests or calculations).

5. Design Calculations for Vibration Isolation Devices: Calculate static and dynamic loading due to equipment weight and operating forces required to select proper vibration isolators, and to design vibration isolation bases.

6. Riser Supports: Include riser diagrams and calculations showing anticipated expansion and contraction at each support point, initial and final loads on building structure, and spring deflection changes. Include certification that riser system was examined for excessive stress and that none exists.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Show coordination of vibration isolation device installation and seismic bracing for HVAC piping and equipment with other systems and equipment in the vicinity, including other supports and restraints, if any.

B. Welding certificates.

C. Field quality-control reports.

D. Submit shop drawings of all isolators, seismic restraints and calculations provided.

E. The manufacturer of vibration isolation products shall submit the following data for each piece of isolated equipment.
 1. Clearly identified equipment tag, quantity and size of vibration isolators and seismic restraints for each piece of rotating isolated equipment.
 2. Submittals for mountings and hangers incorporating springs shall include spring diameter and free height, rated deflections, and solid load.
 3. Submittals for bases shall clearly identify locations for all mountings as well as all locations for attachment points of the equipment to the mounting base.
 4. Submittals shall include seismic calculations signed and checked by a licensed engineer.
 5. Catalog cut sheets and installation instructions shall be included for each type of isolation mounting or seismic restraint used on equipment being isolated.

F. Submit quality assurance procedures as required under paragraph 1.5 at time of isolator/seismic submittals. Submittal must be stamped by a registered professional engineer who is responsible for the seismic restraint design. All vibration isolation/seismic submittals not complying with this certification will be rejected.

G. Provide shop drawing indicating location of all cable restraints required for pipe and ductwork. Drawings mush be stamped by manufacturer’s registered professional engineer.

H. Manufacturers of designated seismic system mechanical equipment that is required to have Special Certification in accordance with paragraph 1.2.E shall provide certification that their equipment is capable of resisting expected seismic loads without failure. These equipment manufacturers shall provide suitable attachment points and/or instructions for attaching seismic restraints.
I. Provide a certification from the seismic design engineer that the seismic restraints will comply with the applicable code requirements. Certification must be stamped by a registered professional engineer.

J. Provide a Certification of Completion from the manufacturer’s representative upon completion of the job.

K. Seismic Certification Data: Provide special certification for designated seismic systems as indicated in ASCE/SEI 7-10, Paragraph 13.2.2, "Special Certification Requirements for Designated Seismic Systems" for all Designated Seismic Systems identified as such on Drawings or in the Specifications.
 1. Provide equipment manufacturer's written certification for each designated active mechanical seismic device and system, stating that it will remain operable following the design earthquake. Certification must be based on requirements of ASCE/SEI 7 and AHRI 1270, including shake table testing per ICC-ES AC156 or a similar nationally recognized testing standard procedure acceptable to authorities having jurisdiction or experience data as permitted by ASCE/SEI 7-10.
 2. Provide equipment manufacturer’s written certification that components with hazardous contents maintain containment following the design earthquake by methods required in ASCE/SEI 7-10.
 3. Submit evidence demonstrating compliance with these requirements for approval to authorities having jurisdiction after review and acceptance by a licensed professional engineer.

L. Wind-Force Performance Certification: Provide special certification for HVAC components subject to high wind exposure and impact damage and designated on Drawings or in the Specifications to require wind-force performance certification.
 1. Provide equipment manufacturer’s written certification for each designated HVAC device, stating that it will remain in place and operable following the design wind event and comply with all requirements of authorities having jurisdiction.
 2. Provide manufacturer’s written certification for each designated louver, damper, or similar device, stating that it will remain in place and protect opening from penetration of windborne debris and comply with all requirements of authorities having jurisdiction.
 3. Certification must be based on ICC-ES or similar nationally recognized testing standard procedures acceptable to authorities having jurisdiction.
 4. The following HVAC systems and components require special certification for high wind performance. Written special certification of resistance to the effects of high wind force and impact damage must be provided by manufacturer:

1.5 QUALITY ASSURANCE

A. Testing Agency Certifications: An independent agency, with the experience and capability to conduct testing indicated, be an NRTL as defined by OSHA in 29 CFR 1910.7, and be acceptable to authorities having jurisdiction.

B. Welding Certifications: Certify procedures and personnel in accordance with AWS D1.1/D1.1M, "Structural Welding Code - Steel."

C. Seismic- and Wind-Load-Restraint Device Load Ratings: Devices to be tested and rated in accordance with applicable code requirements and authorities having jurisdiction. Devices to be listed by a nationally recognized third party that requires periodic follow-up inspections and has a listing directory available to the public. Provide third-party listing by one or more of the following: An evaluation service member of ICC-ES.
D. Steel components shall be cleaned and painted with industrial enamel. All nuts, bolts, and washers shall be zinc-electroplated. Structural steel bases shall be thoroughly cleaned of welding slag and primed with zinc-chromate or metal etching primer.

E. All isolators, bases and seismic restraints exposed to the weather shall utilize cadmium-plated epoxy coat or PVC coated springs and hot dipped galvanized steel components. Nuts, bolts and washers may be zinc-electroplated. Isolators for outdoor mounted equipment shall provide adequate restraint for the greater of either wind loads required by local codes or withstand a minimum of 30 pounds per square foot applied to any exposed surface of the equipment.

F. Provide a written quality control procedure that outlines complete compliance of attachment of cabling restraints to brackets. For swaged connections, provide a gage to verify swage. The use of “U” shaped cable clips and wedge type fittings are prohibited. Only swaged and poured socket connections comply with ASCE 19-10.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a licensed professional engineer, as defined in Section 014000 "Quality Requirements,” to design seismic and wind-load control system.
1. Seismic and Wind-Load Performance: Equipment to withstand the effects of earthquake motions and high wind events determined in accordance with ASCE/SEI 7-10.

B. Consequential Damage: Provide additional seismic restraints for suspended HVAC components or anchorage of floor-, roof-, or wall-mounted HVAC components as indicated in ASCE/SEI 7-10 so that failure of a non-essential or essential HVAC component will not cause failure of any other essential architectural, mechanical, or electrical building component.

C. Fire/Smoke Resistance: Seismic- and wind-load-restraint devices that are not constructed of ferrous metals must have a maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested by an NRTL in accordance with ASTM E84 or UL 723, and be so labeled.

D. Component Supports:
1. Load ratings, features, and applications of all reinforcement components must be based on testing standards of a nationally recognized testing agency.
2. All component support attachments must comply with force and displacement resistance requirements of ASCE/SEI 7-10 Section 13.6.

2.2 RESTRAINTS - RIGID TYPE

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. CADDY; brand of nVent Electrical plc.
2. California Dynamics Corporation.
3. Cooper B-line; brand of Eaton, Electrical Sector.
4. Hilti, Inc.
5. Isolation Technology, Inc.
6. TOLCO.
7. Unistrut; Atkore International.
8. Vibration Mountings & Controls, Inc.
B. Description: Shop- or field-fabricated bracing assembly made of AISI S110-07-S1 slotted steel channels, ANSI/ASTM A53/A53M steel pipe as per NFPA 13, or other rigid steel brace member. Includes accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; rated in tension, compression, and torsion forces.

2.3 RERAINTS - CABLE TYPE

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. CADDY; brand of nVent Electrical plc.
 2. Cooper B-line; brand of Eaton, Electrical Sector.
 3. Gripple Inc.
 4. Loos & Co.
 5. Vibration Mountings & Controls, Inc.

B. Seismic-Restraint Cables: ASTM A1023/A1023M galvanized or ASTM A603 galvanized-steel cables. End connections made of steel assemblies with thimbles, brackets, swivel, and bolts designed for seismic-restraining cable service; with fittings attached by means of poured socket, swaged socket or mechanical (Flemish eye) loop.

C. Restraint cable assembly with cable fittings must comply with ASCE/SEI 19. All cable fittings and complete cable assembly must maintain the minimum cable breaking force. U-shaped cable clips and wedge-type end fittings do not comply and are unacceptable.

2.4 RESTRAINT ACCESSORIES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. CADDY; brand of nVent Electrical plc.
 2. Cooper B-line; brand of Eaton, Electrical Sector.
 3. Hilti, Inc.
 4. Loos & Co.
 5. Mason Industries, Inc.
 6. TOLCO.
 7. Unistrut; Atkore International.

B. Hanger-Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections to hanger rod. Non-metallic stiffeners are unacceptable.

C. Hinged and Swivel Brace Attachments: Multifunctional steel connectors for attaching hangers to rigid channel bracings and restraint cables.

D. Bushings for Floor-Mounted Equipment Anchor Bolts: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchor bolts and studs.

E. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings, and matched to type and size of attachment devices used.

F. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.
2.5 POST-INSTALLED CONCRETE ANCHORS

A. Mechanical Anchor Bolts:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Cooper B-line; brand of Eaton, Electrical Sector.
 b. Hilti, Inc.
 c. Mason Industries, Inc.
 d. Powers Fasteners.
 e. Simpson Strong-Tie Co., Inc.
 f. Unistrut; Atkore International.
 2. Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength for anchor and as tested according to ASTM E488/E488M.

B. Provide post-installed concrete anchors that have been pre-certified for use in wind-load applications. Post-installed concrete anchors must comply with all requirements of ASCE/SEI 7-10, Ch. 13.
 1. Pre-certify post-installed anchors in concrete in accordance with ACI 355.2 or other approved certifications testing procedures.
 2. Pre-certify post-installed anchors in masonry in accordance with approved certified procedures.

C. Expansion-type anchor bolts are not permitted for equipment in excess of 10 hp that is not vibration isolated.
 1. Undercut expansion anchors are permitted.

2.6 CONCRETE INSERTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Cooper B-line; brand of Eaton, Electrical Sector.
 2. Hilti, Inc.
 3. Mason Industries, Inc.
 5. Simpson Strong-Tie Co., Inc.
 6. Unistrut; Atkore International.

B. Provide preset concrete inserts that are seismically pre-certified in accordance with ICC-ES AC466 testing.

C. Comply with ANSI/MSS SP-58.

PART 3 - EXECUTION

3.1 APPLICATIONS

A. Multiple Pipe Supports: Secure pipes to trapeze member with clamps approved for application by an evaluation service member of ICC-ES.

B. Hanger-Rod Stiffeners: Install where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.
C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength is adequate to carry present and future static, wind load, and seismic loads within specified loading limits.

3.2 INSTALLATION OF VIBRATION-CONTROL, WIND-LOAD CONTROL, AND SEISMIC-RESTRAINT DEVICES

A. Provide vibration-control devices for systems and equipment where indicated in Equipment Schedules or Vibration-Control Devices Schedules, where indicated on Drawings, or where Specifications indicate they are to be installed on specific equipment and systems.

B. Provide seismic-restraint and wind-load control devices for systems and equipment where indicated in Equipment Schedules or Seismic-Restraint Devices Schedules, where indicated on Drawings, where Specifications indicate they are to be installed on specific equipment and systems, and where required by applicable codes.

C. Coordinate location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified in Section 033000 "Cast-in-Place Concrete."

D. Installation of vibration isolators, wind-load restraints, must not cause any change of position of equipment, piping, or ductwork resulting in stresses or misalignment.

E. Comply with requirements in Section 077200 "Roof Accessories" for installation of roof curbs, equipment supports, and roof penetrations.

F. Equipment Restraints:
 1. Install seismic snubbers on HVAC equipment mounted on vibration isolators. Locate snubbers as close as possible to vibration isolators and bolt to equipment base and supporting structure.
 2. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.
 3. Install seismic-restraint, and wind-load-restraint devices using methods approved by an evaluation service member of ICC-ES that provides required submittals for component.

G. Piping Restraints:
 1. Comply with requirements in MSS SP-127.
 2. Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum of 80 feet o.c.
 3. Brace a change of direction longer than 12 feet.

H. Install seismic- and wind-load-restraint cables so they do not bend across edges of adjacent equipment or building structure.

I. Install seismic- and wind-load-restraint devices using methods approved by an evaluation service member of ICC-ES that provides required submittals for component.

J. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.

K. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.
L. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

M. Mechanical Anchor Bolts:
1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
3. Wedge-Type Anchor Bolts: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors to be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
4. Set anchors to manufacturer's recommended torque, using a torque wrench.
5. Install zinc-coated steel anchors for interior and stainless steel anchors for exterior applications.

3.3 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION
A. Provide flexible connections in piping systems where they cross structural seismic joints and other point where differential movement may occur. Provide adequate flexibility to accommodate differential movement as determined in accordance with ASCE/SEI 7. Comply with requirements in Section 232113 "Hydronic Piping" and Section 232116 "Hydronic Piping Specialties" for piping flexible connections.

3.4 ADJUSTING
A. Adjust isolators after system is at operating weight.
B. Adjust limit stops on restrained-spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.

3.5 FIELD QUALITY CONTROL
A. Testing Agency: Engage a certified testing agency to perform tests and inspections.
B. Tests and Inspections:
1. Perform tests and inspections with the assistance of a factory-authorized service representative.
2. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.
3. Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless postconnection testing has been approved), and with at least seven days’ advance notice.
5. Test no fewer than four of each type and size of installed anchors and fasteners selected by Architect.
6. Test to 90 percent of rated proof load of device.
7. Measure isolator restraint clearance.
8. Measure isolator deflection.
9. Verify snubber minimum clearances.
10. Test and adjust restrained-air-spring isolator controls and safeties.
C. Remove and replace malfunctioning units and retest as specified above.

D. Units will be considered defective if they do not pass tests and inspections.

E. Prepare test and inspection reports.

END OF SECTION 230548
SECTION 230553 - IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Equipment labels.
 2. Warning signs and labels.
 3. Pipe labels.
 4. Valve tag.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Samples: For color, letter style, and graphic representation required for each identification material and device.

C. Equipment-Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Plastic Labels for Equipment:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Brady Corporation
 b. Brimar Industries, Inc.
 c. Carlton Industries, LP
 d. Champion America
 e. Craftmark Pipe Markers
 f. Emedco
 g. Kolbi Pipe Marker Co
 h. LEM Products Inc.
 i. Marking Services, Inc.
 j. Seton Identification Products; a Brady Corporation company
 2. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, with predrilled holes for attachment hardware.
 3. Letter and Background Color: As indicated for specific application under Part 3.
 4. Maximum Temperature: Able to withstand temperatures of up to 160 deg F.
 5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances of up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 7. Fasteners: Stainless steel rivets or self-tapping screws.
 8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
B. Label Content: Include equipment's Drawing designation or unique equipment number, capacity rating information, the panel and circuit from which the equipment is processed.

2.2 WARNING SIGNS AND LABELS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Brady Corporation
 2. Brimar Industries, Inc.
 3. Carlton Industries, LP
 4. Champion America
 5. Craftmark Pipe Markers
 6. Ermedco
 7. LEM Products Inc.
 8. Marking Services Inc.
 9. National Marker Company
 10. Seton Identification Products; a Brady Corporation company
 11. Stranco, Inc.

B. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, with predrilled holes for attachment hardware.

C. Letter and Background Color: As indicated for specific application under Part 3.

D. Maximum Temperature: Able to withstand temperatures of up to 160 deg F.

E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances of up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

G. Fasteners: Stainless steel self-taping screws.

H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

I. Arc-Flash Warning Signs: Provide arc-flash warning signs in locations and with content in accordance with requirements of OSHA and NFPA70E and other applicable codes and standards.

J. Label Content: Include caution and warning information plus emergency notification instructions.

2.3 PIPE LABELS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Actioncraft Products, Inc.; a division of Industrial Test Equipment Co., Inc.
 2. Brady Corporation
 4. Carlton Industries LP
 5. Champion America
 6. Craftmark Pipe Markers
7. Emedco
8. Kolbi Pipe Marker Co.
9. LEM Products Inc.
10. Marking Services Inc.
11. Seton Identification Products; a Brady Corporation company

B. General Requirements for Manufactured Pipe Labels: Preprinted, color coded, with lettering indicating service and showing flow direction in accordance with ASME A13.1.

C. Letter and Background Color: As indicated for specific application under Part 3.

D. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

E. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings. Also include:
 1. Pipe size.
 2. Flow-Direction Arrows: Include flow-direction arrows on main distribution piping. Arrows may be either integral with label or applied separately.
 3. Lettering Size: Size letters in accordance with ASME A13.1 for piping.

PART 3 - EXECUTION

3.1 PREPARATION
 A. Clean piping and equipment surfaces of incompatible primers, paints, and encapsulants, as well as dirt, oil, grease, release agents, and other substances that could impair bond of identification devices.

3.2 INSTALLATION, GENERAL REQUIREMENTS
 A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
 B. Coordinate installation of identifying devices with locations of access panels and doors.
 C. Install identifying devices before installing acoustical ceilings and similar concealment.
 D. Locate identifying devices so that they are readily visible from the point of normal approach.

3.3 INSTALLATION OF EQUIPMENT LABELS, WARNING SIGNS, AND LABELS
 A. Permanently fasten labels on each item of mechanical equipment.
 B. Sign and Label Colors:
 1. White letters on an ANSI Z535.1 safety-blue background.
 C. Locate equipment labels where accessible and visible.

3.4 WARNING-TAG INSTALLATION
 A. Write required message on, and attach warning tags to, equipment and other items where required.
3.5 INSTALLATION OF PIPE LABELS

A. Piping Color Coding: Painting of piping is specified in Section 099600 "High-Performance Coatings."

B. Install pipe labels showing service and flow direction with permanent adhesive on pipes.

C. Pipe-Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 1. Within 3 ft. of each valve and control device.
 2. At access doors, manholes, and similar access points that permit view of concealed piping.
 3. Within 3 ft. of equipment items and other points of origination and termination.
 4. Spaced at maximum intervals of 25 ft. along each run. Reduce intervals to 10 ft. in areas of congested piping, ductwork, and equipment.

D. Do not apply plastic pipe labels or plastic tapes directly to bare pipes conveying fluids at temperatures of 125 deg F or higher. Where these pipes are to remain uninsulated, use a short section of insulation or use stenciled labels.

E. Flow-Direction Arrows: Use arrows to indicate direction of flow in pipes, including pipes where flow is allowed in both directions.

F. Pipe-Label Color Schedule:

END OF SECTION 230553
SECTION 230594 - TESTING, ADJUSTING, AND BALANCING FOR HVAC – AIR/HYDRONIC

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Balancing Air Systems:
 a. Constant-volume air systems.
 2. Balancing Hydronic Piping Systems:
 a. Constant-flow hydronic systems.
 b. Variable-flow hydronic systems.

1.2 DEFINITIONS

C. TAB: Testing, adjusting, and balancing.
D. TABB: Testing, Adjusting, and Balancing Bureau.
E. TAB Specialist: An entity engaged to perform TAB Work.

1.3 INFORMATIONAL SUBMITTALS

B. Certified TAB reports.

1.4 QUALITY ASSURANCE

A. TAB Contractor Certifications: Engage a TAB entity certified by AABC or NEBB.
 1. TAB Field Supervisor: Employee of the TAB contractor and certified by AABC or NEBB.
 2. TAB Technician: Employee of the TAB contractor and who is certified by AABC or NEBB as a TAB technician.
B. Certify TAB field data reports and perform the following:
 1. Review field data reports to validate accuracy of data and to prepare certified TAB reports.
 2. Certify that the TAB team complied with the approved TAB plan and the procedures specified and referenced in this Specification.
D. Instrumentation Type, Quantity, Accuracy, and Calibration: As described in ASHRAE 111, Section 5, "Instrumentation."
E. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 7.2.2 - "Air Balancing."
F. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.7.2.3 - "System Balancing."

G. Acceptable Test and Balance Companies
1. BTC Services (801) 974-5911
2. Bonneville Test and Balance (801) 694-4091
3. Flo Rite, Inc. (208) 238-8330
4. RS Analysis (801) 255-5015

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment.

B. Examine systems for installed balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are accessible.

C. Examine the approved submittals for HVAC systems and equipment.

D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls.

E. Examine ceiling plenums and underfloor air plenums used for supply, return, or relief air to verify that they meet the leakage class of connected ducts as specified in Section 233113 "Metal Ducts" and are properly separated from adjacent areas. Verify that penetrations in plenum walls are sealed and fire-stopped if required.

F. Examine equipment performance data including fan and pump curves.
 1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
 2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems - Duct Design." Compare results with the design data and installed conditions.

G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.

H. Examine test reports specified in individual system and equipment Sections.

I. Examine HVAC equipment and filters and verify that bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.

J. Examine terminal units, such as variable-air-volume boxes, and verify that they are accessible and their controls are connected and functioning.
K. Examine strainers. Verify that startup screens are replaced by permanent screens with indicated perforations.

L. Examine three-way valves for proper installation for their intended function of diverting or mixing fluid flows.

M. Examine heat-transfer coils for correct piping connections and for clean and straight fins.

N. Examine system pumps to ensure absence of entrained air in the suction piping.

O. Examine operating safety interlocks and controls on HVAC equipment.

P. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

A. Prepare a TAB plan that includes strategies and step-by-step procedures.

B. Complete system-readiness checks and prepare reports. Verify the following:
 1. Permanent electrical-power wiring is complete.
 2. Hydronic systems are filled, clean, and free of air.
 3. Automatic temperature-control systems are operational.
 4. Equipment and duct access doors are securely closed.
 5. Balance, smoke, and fire dampers are open.
 6. Isolating and balancing valves are open and control valves are operational.
 7. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided.
 8. Windows and doors can be closed so indicated conditions for system operations can be met.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

A. Perform testing and balancing procedures on each system according to the procedures contained in AABC's "National Standards for Total System Balance" and in this Section.
 1. Comply with requirements in ASHRAE 62.1, Section 7.2.2 - "Air Balancing."

B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.
 1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
 2. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Section 230713 "Duct Insulation," Section 230716 "HVAC Equipment Insulation," Section 230719 "HVAC Piping Insulation."

C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.

D. Take and report testing and balancing measurements in inch-pound (IP) units.

E. Fan Systems:
 1. Include labor and material for one (1) pulley and belt change per fan system.
3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.

B. Prepare schematic diagrams of systems' "as-built" duct layouts.

C. For variable-air-volume systems, develop a plan to simulate diversity.

D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.

E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.

F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.

G. Verify that motor starters are equipped with properly sized thermal protection.

H. Check dampers for proper position to achieve desired airflow path.

I. Check for airflow blockages.

J. Check condensate drains for proper connections and functioning.

K. Check for proper sealing of air-handling-unit components.

L. Verify that air duct system is sealed as specified in Section 233113 "Metal Ducts."

3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.
 1. Measure total airflow.
 a. Where sufficient space in ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow.
 2. Measure fan static pressures as follows to determine actual static pressure:
 a. Measure outlet static pressure as far downstream from the fan as practical and upstream from restrictions in ducts such as elbows and transitions.
 b. Measure static pressure directly at the fan outlet or through the flexible connection.
 c. Measure inlet static pressure of single-inlet fans in the inlet duct as near the fan as possible, upstream from the flexible connection, and downstream from duct restrictions.
 d. Measure inlet static pressure of double-inlet fans through the wall of the plenum that houses the fan.
 3. Measure static pressure across each component that makes up an air-handling unit, rooftop unit, and other air-handling and -treating equipment.
 a. Report the cleanliness status of filters and the time static pressures are measured.
 4. Measure static pressures entering and leaving other devices, such as sound traps, heat-recovery equipment, and air washers, under final balanced conditions.
 5. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.
6. Obtain approval from Architect for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.

7. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload will occur. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.

B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows within specified tolerances.
 1. Measure airflow of submain and branch ducts.
 a. Where sufficient space in submain and branch ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow for that zone.
 2. Measure static pressure at a point downstream from the balancing damper, and adjust volume dampers until the proper static pressure is achieved.
 3. Remeasure each submain and branch duct after all have been adjusted. Continue to adjust submain and branch ducts to indicated airflows within specified tolerances.

C. Measure air outlets and inlets without making adjustments.
 1. Measure terminal outlets using a direct-reading hood or outlet manufacturer's written instructions and calculating factors.

D. Adjust air outlets and inlets for each space to indicated airflows within specified tolerances of indicated values. Make adjustments using branch volume dampers rather than extractors and the dampers at air terminals.
 1. Adjust each outlet in same room or space to within specified tolerances of indicated quantities without generating noise levels above the limitations prescribed by the Contract Documents.
 2. Adjust patterns of adjustable outlets for proper distribution without drafts.

3.6 GENERAL PROCEDURES FOR HYDRONIC SYSTEMS

A. Prepare test reports with pertinent design data, and number in sequence starting at pump to end of system. Check the sum of branch-circuit flows against the approved pump flow rate. Correct variations that exceed plus or minus 5 percent.

B. Prepare schematic diagrams of systems' “as-built” piping layouts.

C. Prepare hydronic systems for testing and balancing according to the following, in addition to the general preparation procedures specified above:
 1. Open all manual valves for maximum flow.
 2. Check liquid level in expansion tank.
 3. Check makeup water-station pressure gage for adequate pressure for highest vent.
 4. Check flow-control valves for specified sequence of operation, and set at indicated flow.
 5. Set differential-pressure control valves at the specified differential pressure. Do not set at fully closed position when pump is positive-displacement type unless several terminal valves are kept open.
 6. Set system controls so automatic valves are wide open to heat exchangers.
 7. Check pump-motor load. If motor is overloaded, throttle main flow-balancing device so motor nameplate rating is not exceeded.
 8. Check air vents for a forceful liquid flow exiting from vents when manually operated.
3.7 PROCEDURES FOR CONSTANT-FLOW HYDRONIC SYSTEMS

A. Measure water flow at pumps. Use the following procedures except for positive-displacement pumps:
 1. Verify impeller size by operating the pump with the discharge valve closed. Read pressure differential across the pump. Convert pressure to head and correct for differences in gage heights. Note the point on manufacturer's pump curve at zero flow and verify that the pump has the intended impeller size.
 a. If impeller sizes must be adjusted to achieve pump performance, obtain approval from Architect and comply with requirements in Section 232123 "Hydronic Pumps."
 2. Check system resistance. With all valves open, read pressure differential across the pump and mark pump manufacturer's head-capacity curve. Adjust pump discharge valve until indicated water flow is achieved.
 a. Monitor motor performance during procedures and do not operate motors in overload conditions.
 3. Verify pump-motor brake horsepower. Calculate the intended brake horsepower for the system based on pump manufacturer's performance data. Compare calculated brake horsepower with nameplate data on the pump motor. Report conditions where actual amperage exceeds motor nameplate amperage.
 4. Report flow rates that are not within plus or minus 10 percent of design.

B. Measure flow at all automatic flow control valves to verify that valves are functioning as designed.

C. Measure flow at all pressure-independent characterized control valves, with valves in fully open position, to verify that valves are functioning as designed.

D. Set calibrated balancing valves, if installed, at calculated presettings.

E. Measure flow at all stations and adjust, where necessary, to obtain first balance.
 1. System components that have Cv rating or an accurately cataloged flow-pressure-drop relationship may be used as a flow-indicating device.

F. Measure flow at main balancing station and set main balancing device to achieve flow that is 5 percent greater than indicated flow.

G. Adjust balancing stations to within specified tolerances of indicated flow rate as follows:
 1. Determine the balancing station with the highest percentage over indicated flow.
 2. Adjust each station in turn, beginning with the station with the highest percentage over indicated flow and proceeding to the station with the lowest percentage over indicated flow.
 3. Record settings and mark balancing devices.

H. Measure pump flow rate and make final measurements of pump amperage, voltage, rpm, pump heads, and systems' pressures and temperatures including outdoor-air temperature.

I. Measure the differential-pressure-control-valve settings existing at the conclusion of balancing.

J. Check settings and operation of each safety valve. Record settings.
3.8 PROCEDURES FOR VARIABLE-FLOW HYDRONIC SYSTEMS

A. Balance systems with automatic two- and three-way control valves by setting systems at maximum flow through heat-exchange terminals and proceed as specified above for hydronic systems.

3.9 PROCEDURES FOR MOTORS

A. Motors, 1/2 HP and Larger: Test at final balanced conditions and record the following data:
1. Manufacturer's name, model number, and serial number.
4. Efficiency rating.
5. Nameplate and measured voltage, each phase.
6. Nameplate and measured amperage, each phase.
7. Starter thermal-protection-element rating.

B. Motors Driven by Variable-Frequency Controllers: Test for proper operation at speeds varying from minimum to maximum. Test the manual bypass of the controller to prove proper operation. Record observations including name of controller manufacturer, model number, serial number, and nameplate data.

3.10 PROCEDURES FOR CHILLERS

A. Balance water flow through each evaporator and condenser to within specified tolerances of indicated flow with all pumps operating. With only one chiller operating in a multiple chiller installation, do not exceed the flow for the maximum tube velocity recommended by the chiller manufacturer. Measure and record the following data with each chiller operating at design conditions:
1. Evaporator-water entering and leaving temperatures, pressure drop, and water flow.
2. For water-cooled chillers, condenser-water entering and leaving temperatures, pressure drop, and water flow.
3. Evaporator and condenser refrigerant temperatures and pressures, using instruments furnished by chiller manufacturer.
4. Power factor if factory-installed instrumentation is furnished for measuring kilowatts.
5. Kilowatt input if factory-installed instrumentation is furnished for measuring kilowatts.
7. For air-cooled chillers, verify condenser-fan rotation and record fan and motor data including number of fans and entering- and leaving-air temperatures.

3.11 PROCEDURES FOR BOILERS

A. Hydronic Boilers: Measure and record entering- and leaving-water temperatures and water flow.

B. Steam Boilers: Measure and record entering-water temperature and flow and leaving-steam pressure, temperature, and flow.

3.12 PROCEDURES FOR HEAT-TRANSFER COILS

A. Measure, adjust, and record the following data for each water coil:
1. Entering- and leaving-water temperature.
2. Water flow rate.
3. Water pressure drop.
4. Dry-bulb temperature of entering and leaving air.
5. Wet-bulb temperature of entering and leaving air for cooling coils.
6. Airflow.
7. Air pressure drop.

B. Measure, adjust, and record the following data for each gas heat exchanger.

C. Measure, adjust, and record the following data for each steam coil:
 1. Dry-bulb temperature of entering and leaving air.
 2. Airflow.
 3. Air pressure drop.
 4. Inlet steam pressure.

D. Measure, adjust, and record the following data for each refrigerant coil:
 1. Dry-bulb temperature of entering and leaving air.
 2. Wet-bulb temperature of entering and leaving air.
 3. Airflow.
 4. Air pressure drop.
 5. Refrigerant suction pressure and temperature.

3.13 PROCEDURES FOR TESTING, ADJUSTING, AND BALANCING EXISTING SYSTEMS

A. Perform a preconstruction inspection of existing equipment that is to remain and be reused.
 1. Measure and record the operating speed, airflow, and static pressure of each fan.
 2. Measure motor voltage and amperage. Compare the values to motor nameplate information.
 3. Check the refrigerant charge.
 4. Check the condition of filters.
 5. Check the condition of coils.
 6. Check the operation of the drain pan and condensate-drain trap.
 7. Check bearings and other lubricated parts for proper lubrication.

B. Before performing testing and balancing of existing systems, inspect existing equipment that is to remain and be reused to verify that existing equipment has been cleaned and refurbished. Verify the following:
 1. New filters are installed.
 2. Coils are clean and fins combed.
 3. Drain pans are clean.
 4. Fans are clean.
 5. Bearings and other parts are properly lubricated.
 6. Deficiencies noted in the preconstruction report are corrected.

C. Perform testing and balancing of existing systems to the extent that existing systems are affected by the renovation work.
 1. Compare the indicated airflow of the renovated work to the measured fan airflows, and determine the new fan speed and the face velocity of filters and coils.
 2. Verify that the indicated airflows of the renovated work result in filter and coil face velocities and fan speeds that are within the acceptable limits defined by equipment manufacturer.
 3. If calculations increase or decrease the air flow rates and water flow rates by more than 5 percent, make equipment adjustments to achieve the calculated rates. If increase or decrease is 5 percent or less, equipment adjustments are not required.
 4. Balance each air outlet.
3.14 TOLERANCES

A. Set HVAC system's air flow rates and water flow rates within the following tolerances:
 1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent.
 2. Air Outlets and Inlets: Plus or minus 10 percent.
 3. Heating-Water Flow Rate: Plus or minus 10 percent.
 4. Cooling-Water Flow Rate: Plus or minus 10 percent.

3.15 REPORTING

A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems' balancing devices. Recommend changes and additions to systems' balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.

B. Status Reports: Prepare weekly progress reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.

3.16 FINAL REPORT

A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.
 1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
 2. Include a list of instruments used for procedures, along with proof of calibration.

B. Final Report Contents: In addition to certified field-report data, include the following:
 1. Pump curves.
 2. Fan curves.
 3. Manufacturers' test data.
 4. Field test reports prepared by system and equipment installers.
 5. Other information relative to equipment performance; do not include Shop Drawings and product data.

C. General Report Data: In addition to form titles and entries, include the following data:
 1. Title page.
 2. Name and address of the TAB contractor.
 3. Project name.
 4. Project location.
 5. Architect's name and address.
 6. Engineer's name and address.
 7. Contractor's name and address.
 9. Signature of TAB supervisor who certifies the report.
 10. Table of Contents with the total number of pages defined for each section of the report.
 11. Summary of contents including the following:
 a. Indicated versus final performance.
 b. Notable characteristics of systems.
 c. Description of system operation sequence if it varies from the Contract Documents.
12. Nomenclature sheets for each item of equipment.
13. Data for terminal units, including manufacturer’s name, type, size, and fittings.
14. Notes to explain why certain final data in the body of reports vary from indicated values.
15. Test conditions for fans and pump performance forms including the following:
 a. Settings for outdoor-, return-, and exhaust-air dampers.
 b. Conditions of filters.
 c. Cooling coil, wet- and dry-bulb conditions.
 d. Fan drive settings including settings and percentage of maximum pitch diameter.
 e. Settings for supply-air, static-pressure controller.
 f. Other system operating conditions that affect performance.

D. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:
 1. Quantities of outdoor, supply, return, and exhaust airflows.
 2. Water and steam flow rates.
 3. Duct, outlet, and inlet sizes.
 4. Pipe and valve sizes and locations.
 5. Terminal units.

END OF SECTION 230594
SECTION 230719 - HVAC PIPING INSULATION

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes insulation for HVAC piping systems.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Samples: For each type of insulation and jacket indicated. Identify each Sample, describing product and intended use.

1.3 INFORMATIONAL SUBMITTALS

A. Material test reports.

B. Field quality-control reports.

1.4 QUALITY ASSURANCE

A. Installer Certifications: Skilled mechanics who have successfully completed an apprenticeship program or craft training program, certified by the Department of Labor, Bureau of Apprenticeship and Training.

1.5 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.6 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products in accordance with ASTM E84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation, jacket materials, adhesive, mastic, tapes, and cement material containers with appropriate markings of applicable testing agency.

1. All Insulation Installed Indoors and Outdoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
2.2 INSULATION MATERIALS

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come into contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested in accordance with ASTM C871.

D. Insulation materials for use on austenitic stainless steel shall be certified as acceptable in accordance with ASTM C795.

E. Glass-Fiber, Preformed Pipe: Glass fibers bonded with a thermosetting resin; suitable for maximum use temperature up to 850 deg F in accordance with ASTM C411. Comply with ASTM C547.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Johns Manville; a Berkshire Hathaway company.
 b. Knauf Insulation.
 c. Manson Insulation Inc.
 d. Owens Corning.
 2. Preformed Pipe Insulation: Type I, Grade A, with factory-applied ASJ.
 3. Fabricated shapes in accordance with ASTM C450 and ASTM C585.

2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.

B. Glass-Fiber and Mineral Wool Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Foster Brand; H. B. Fuller Construction Products.
 c. Mon-Eco Industries, Inc.

C. ASJ Adhesive: Comply with MIL-A-3316C, Class 2, Grade A, for bonding insulation jacket lap seams and joints.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Foster Brand; H. B. Fuller Construction Products.
 c. Mon-Eco Industries, Inc.

D. PVC Jacket Adhesive: Compatible with PVC jacket.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Johns Manville; a Berkshire Hathaway company.
 b. P.I.C. Plastics, Inc.
 c. Proto Corporation.
 d. Sekisui Voltek, LLC.
 e. Speedline Corporation.
2.4 SEALANTS

A. Materials shall be as recommended by the insulation manufacturer and shall be compatible with insulation materials, jackets, and substrates.

B. ASJ Flashing Sealants:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Foster Brand; H. B. Fuller Construction Products.
 2. Fire- and water-resistant, flexible, elastomeric sealant.
 3. Service Temperature Range: Minus 40 to plus 250 deg F.

2.5 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C1136, Type I.
 2. ASJ+: Aluminum foil reinforced with glass scrim bonded to a kraft paper interleaving with an outer film leaving no paper exposed; complying with ASTM C1136, Types I, II, III, IV, and VII.
 3. PSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with polyethylene backing; complying with ASTM C1136, Type II.

2.6 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C1136, Type I, unless otherwise indicated.

B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Airex Manufacturing.
 b. Johns Manville; a Berkshire Hathaway company.
 c. P.I.C. Plastics, Inc.
 d. Proto Corporation.
 e. Speedline Corporation.
 2. Adhesive: As recommended by jacket material manufacturer.
 4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.

C. Self-Adhesive Indoor/Outdoor Jacket (Non-Asphaltic): Vapor barrier and waterproofing jacket for installation over insulation located aboveground outdoors or indoors. Specialized jacket has five layers of laminated aluminum and polyester film with low-temperature acrylic pressure-sensitive adhesive. Outer aluminum surface is coated with UV-resistant coating for protection from environmental contaminants.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. 3M.
 b. Foster Brand; H. B. Fuller Construction Products.
 c. Ideal Tape Co., Inc., an American Biltrite Company.

2. Permeance: 0.00 perm as tested in accordance with ASTM F1249.
3. Flamespread/Smoke Developed: 25/50 as tested in accordance with ASTM E84.

2.7 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C1136.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. 3M Industrial Adhesives and Tapes Division.
 b. Avery Dennison Corporation, Specialty Tapes Division.
 c. Ideal Tape Co., Inc., an American Biltrite Company.
 d. Knauf Insulation.
 2. Width: 3 inches.
 3. Thickness: 11.5 mils.
 5. Elongation: 2 percent.
 6. Tensile Strength: 40 lbf/inch in width.
 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. 3M Industrial Adhesives and Tapes Division.
 2. Width: 2 inches.
 3. Thickness: 6 mils.
 5. Elongation: 500 percent.
 6. Tensile Strength: 18 lbf/inch in width.

C. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. 3M Industrial Adhesives and Tapes Division.
 b. Avery Dennison Corporation, Specialty Tapes Division.
 c. Ideal Tape Co., Inc., an American Biltrite Company.
 d. Knauf Insulation.
 2. Width: 2 inches.
 3. Thickness: 3.7 mils.
 5. Elongation: 5 percent.
 6. Tensile Strength: 34 lbf/inch in width.

2.8 SECUREMENTS

A. Staples: Outward-clinching insulation staples, nominal 3/4 inch wide, stainless steel or Monel.
PART 3 - EXECUTION

3.1 PREPARATION

A. Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless steel surfaces, use demineralized water.

3.2 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping, including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and of thicknesses required for each item of pipe system, as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, compress, or otherwise damage insulation or jacket.

D. Install insulation with longitudinal seams at top and bottom (12 o'clock and 6 o'clock positions) of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during storage, application, and finishing. Replace insulation materials that get wet during storage or in the installation process before being properly covered and sealed in accordance with the Contract Documents, unless otherwise approved by the engineer of record.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends attached to structure with vapor-barrier mastic.
 3. Install insert materials and insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:
1. Draw jacket tight and smooth, but not to the extent of creating wrinkles or areas of compression in the insulation.
2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward-clinching staples along both edges of strip, spaced 4 inches o.c.
3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward-clinching staples along edge at 2 inches o.c.
4. For below-ambient services, apply vapor-barrier mastic over staples.
5. Cover joints and seams with tape, in accordance with insulation material manufacturer's written instructions, to maintain vapor seal.
6. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches in similar fashion to butt joints.

P. For above-ambient services, do not install insulation to the following:
1. Vibration-control devices.
2. Testing agency labels and stamps.
3. Nameplates and data plates.

3.3 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
1. Seal penetrations with flashing sealant.
2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
1. Seal penetrations with flashing sealant.
2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
4. Seal jacket to wall flashing with flashing sealant.
D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.

F. Insulation Installation at Floor Penetrations:
 1. Pipe: Install insulation continuously through floor penetrations.
 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.4 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials, except where more specific requirements are specified in various pipe insulation material installation articles below.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, Mechanical Couplings, and Unions:
 1. Install insulation over fittings, valves, strainers, flanges, mechanical couplings, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 2. Insulate pipe elbows using prefabricated fitting insulation or mitered or routed fittings made from same material and density as that of adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 3. Insulate tee fittings with prefabricated fitting insulation or sectional pipe insulation of same material and thickness as that used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 4. Insulate valves using prefabricated fitting insulation or sectional pipe insulation of same material, density, and thickness as that used for adjacent pipe. Overlap adjoining pipe insulation by not less than 2 times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
 5. Insulate strainers using prefabricated fitting insulation or sectional pipe insulation of same material, density, and thickness as that used for adjacent pipe. Overlap adjoining pipe insulation by not less than 2 times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers, so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
 6. Insulate flanges, mechanical couplings, and unions using a section of oversized preformed pipe insulation to fit. Overlap adjoining pipe insulation by not less than 2 times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Stencil or label the outside insulation jacket of each union with the word "union" matching size and color of pipe labels.
 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
8. For services not specified to receive a field-applied jacket, except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing, using PVC tape.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as that of adjoining pipe insulation.
2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union at least 2 times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless steel or aluminum bands. Select band material compatible with insulation and jacket.
3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.
4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.5 INSTALLATION OF GLASS-FIBER INSULATION

A. Insulation Installation on Straight Pipes and Tubes:
1. Secure each layer of preformed pipe insulation to pipe with wire or bands, and tighten bands without deforming insulation materials.
2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
3. For insulation with jackets on above-ambient surfaces, secure laps with outward-clinched staples at 6 inches o.c.
4. For insulation with jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive, as recommended by insulation material manufacturer, and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:
1. Install prefabricated pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with glass-fiber or mineral-wool blanket insulation.
4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:
1. Install prefabricated sections of same material as that of straight segments of pipe insulation when available.
2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:
1. Install prefabricated sections of same material as that of straight segments of pipe insulation when available.
2. When prefabricated sections are not available, install fabricated sections of pipe insulation to valve body.
3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
4. Install insulation to flanges as specified for flange insulation application.

3.6 INSTALLATION OF FIELD-APPLIED JACKETS

A. Where PVC jackets are indicated and for horizontal applications, install with 1-inch overlap at longitudinal seams and end joints. Seal with manufacturer’s recommended adhesive.
1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

B. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless steel bands 12 inches o.c. and at end joints.

3.7 FINISHES

A. Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 099113 "Exterior Painting“ and Section 099123 "Interior Painting.”
1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

D. Do not field paint aluminum or stainless steel jackets.

3.8 FIELD QUALITY CONTROL

A. Owner will engage a certified testing agency to perform tests and inspections.

B. Engage a certified testing agency to perform tests and inspections.

C. Perform tests and inspections with the assistance of a factory-authorized service representative.

D. Tests and Inspections: Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded
strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.

E. All insulation applications will be considered defective if they do not pass tests and inspections.

F. Prepare test and inspection reports.

3.9 **PIPING INSULATION SCHEDULE, GENERAL**

A. Insulation conductivity and thickness per pipe size shall comply with schedules in this Section or with requirements of authorities having jurisdiction, whichever is more stringent.

B. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

C. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 1. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.10 **INDOOR PIPING INSULATION SCHEDULE**

A. Chilled Water and Brine, Below 40 Deg F:
 1. NPS 2 and Smaller: Insulation shall be the following:
 a. Glass-Fiber, Preformed Pipe, Type 1: 1-1/2 inches thick.
 2. NPS 2.5 to NPS 14: Insulation shall be the following:
 a. Glass-Fiber, Preformed Pipe, Type 1: 2 inches thick.

B. Chilled Water and Brine, 40 Deg F and Above:
 1. NPS 14 and Smaller: Insulation shall be the following:
 a. Glass-Fiber, Preformed Pipe, Type 1: 1-1/2 inches thick.

C. Heating-Hot Water Supply and Return 200 Deg F, and Below:
 1. NPS 1-1/4 and Smaller: Insulation shall be the following:
 a. Glass-Fiber, Preformed Pipe, Type 1: 1-1/2 inches thick.
 2. NPS 1-1/2 and Larger: Insulation shall be the following:
 a. Glass-Fiber, Preformed Pipe, Type 1: 2 inches thick.

3.11 **INDOOR, FIELD-APPLIED JACKET SCHEDULE**

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Piping, Concealed:
 1. None.

D. Piping, Exposed:
 1. PVC: 20 mils thick.

END OF SECTION 230719
SECTION 230900 – DIRECT DIGITAL CONTROL SYSTEM FOR HVAC

PART 1 - GENERAL

1.1 SUMMARY

A. Scope: Provide labor, material, equipment, related services, and supervision required, including, but not limited to, manufacturing, fabrication, configuration and installation for complete building automation system (also identified as BMS, Direct Digital Control System For HVAC) including all necessary hardware and all operating and applications software as required for the complete performance of the Work, as shown on the Drawings, as specified herein.

B. Related Sections: Related sections include, but shall not be limited to, the following:
 1. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
 2. Applicable general requirements for electrical Work specified within Divisions 23, 25 Specification Sections apply to this Section.

C. Network level components of the system – workstations, servers, etc. shall communicate using the BACnet protocol, as defined by ASHRAE Standard 135-2004. No gateways shall be used for communication to controllers furnished under this section.

D. At a minimum, provide controls for the following:
 1. Air Handling Units
 2. Boilers including hot water pumps
 3. Chilled water system including pumps and chiller
 4. Power wiring to DDC devices, smoke control dampers and BAS panels except as otherwise specified
 5. Variable Frequency Drives
 6. Domestic Hot Water Pumps

E. Except as otherwise noted, the control system shall consist of all necessary Ethernet Network Controllers, Standalone Digital Control Units, Room Controllers, workstations, software, sensors, transducers, relays, valves, dampers, damper operators, control panels, and other accessory equipment, along with a complete system of electrical interlocking wiring to fill the intent of the specification and provide for a complete and operable system. Except as otherwise specified, provide operators for equipment such as dampers if the equipment manufacturer does not provide these. Coordinate requirements with the various Contractors.

F. The BAS system supplier shall review and study all HVAC drawings and the entire specification to familiarize themselves with the equipment and system operation and to verify the quantities and types of dampers, operators, alarms, etc. to be provided.

G. All interlocking wiring, wiring and installation of control devices associated with the equipment listed below shall be provided under this Contract. When the BAS system is fully installed and operational, the BAS system supplier and representatives of the Owner will review and check out the system – see System Acceptance and Testing section of this document. At that time, the BAS system supplier shall
demonstrate the operation of the system and prove that it complies with the intent of the drawings and specifications.

H. Provide services and manpower necessary for commissioning of the system in coordination with the HVAC Contractor, Balancing Contractor and Owner’s representative.

I. All work performed under this section of the specifications will comply with all governing codes, laws and governing bodies. If the drawings and/or specifications are in conflict with governing codes, the Contractor, with guidance from the engineer, shall submit a proposal with appropriate modifications to the project to meet code restrictions. If this specification and associated drawings exceed governing code requirements, the specification will govern. The Contractor shall obtain and pay for all necessary construction permits and licenses.

1.2 REFERENCES

A. General, Code Compliance: The code listed below form a part of this Specification to the extent referenced. The codes are referred to in the text by the basic designation only. The edition/revision of the referenced code shall be the latest date as of the date of the Contract Documents, unless otherwise specified.

1. Provide BAS components and ancillary equipment, which are UL-916 listed and labeled.
2. All equipment or piping used in conditioned air streams, spaces or return air plenums shall comply with NFPA 90A Flame/Smoke/Fuel contribution rating of 25/50/0 and all applicable building codes or requirements.
3. All wiring shall conform to the National Electrical Code.
4. All smoke dampers shall be rated in accordance with UL 555S.
5. Comply with FCC rules, Part 15 regarding Class A radiation for computing devices and low power communication equipment operating in commercial environments.

1.3 DEFINITIONS

A. Unless specifically defined within the Contract Documents, the words or acronyms contained within this specification shall be as defined within, or by the references listed within this specification, the Contract Documents, or, if not listed by either, by common industry practice.

1. Standard
 a. ASHRAE: American Society Heating, Refrigeration, Air Conditioning Engineers
 b. AHU: Air Handling Unit
 c. BACnet: Building Automation Controls Network
 d. BMS: Building Management System
 e. DDC: Direct Digital Control
 f. EIA: Electronic Industries Alliance
 g. GUI: Graphical User Interface
 h. HVAC: Heating, Ventilation, and Air Conditioning
 i. IEEE: Institute Electrical Electronic Engineers
 j. MER: Mechanical Equipment Room
 k. PID: Proportional, Integral, Derivative
 l. VAV: Variable Air Volume Box

2. Communications and protocols
 a. ARP: Address Resolution Protocol
b. BACnet: Building Automation and Control Networks
c. CORBA: Common Object Request Broker Architecture
d. CSMA/CD: Carrier Sense Multiple Access/Collision Detect
e. DDE: Dynamic Data Exchange
f. FTP: File Transfer Protocol
g. FTT: Free Topology Transceivers
h. HTTP: Hyper Text Transfer Protocol
i. IIOP: Internet Inter-ORB Protocol
j. IP: Internet Protocol
k. LAN: Local Area Network
l. LON: Echelon Communication – Local Operating Network
m. MS/TP: Master Slave Token Passing
n. OBIX: Open Building Information Exchange
o. ODBC: Open Database Connectivity
p. ORB: Object Request Broker
q. SNVT: Standard Network Variables Types
r. SQL: Structured Query Language
s. UDP: User Datagram Protocol
t. XML: eXtensible Markup Language

3. Controllers
a. ASD: Application Specific Device
b. AAC: Advanced Application Controller
c. ASC: Application Specific Controller
d. CAC: Custom Application Controller
e. DCU: Distributed Control Unit
f. HRC: Hotel Room Controller
g. LCM: Local Control Module
h. MC: MicroControllers
i. MPC: Multi-purpose Controller
j. NSC: Network Server Controller
k. PEM: Package Equipment Module
l. PPC: Programmable Process Controller
m. RC: Room controller
n. RPC: Room Purpose Controller
o. SDCU: Standalone Digital Control Units
p. SLC: Supervisory Logic Controller
q. UEC: Unitary Equipment Controller
r. VAVDDC: Variable Air Volume Direct Digital Controller

4. Tools and Software
a. AFDD: Automated Fault Detection and Diagnostic
b. APEO: Automated Predictive Energy Optimization
c. DR: Demand Response
d. CCDT: Configuration, Commissioning and Diagnostic Tool
1.4 SYSTEM DESCRIPTION

A. In accordance to the scope of work, the system shall also provide a graphical, web-based, operator interface that allows for instant access to any system through a standard browser. The contractor must provide operator workstations and microcomputer controllers of modular design providing distributed processing capability, and allowing future expansion of both input/output points and processing/control functions.

B. For this project, the system shall consist of the following components:

1. Web-Based Operator Workstations: The BAS system supplier shall furnish licenses for web connection to the BAS system. Web-based users shall have access to all system points and graphics, shall be able to receive and acknowledge alarms, and shall be able to control setpoints and other parameters. All engineering work, such as trends, reports, graphics, etc. that are accomplished from the WorkStation shall be available for viewing through the web browser interface without additional changes. The web-based interface must conform to the B-OWS BACnet device profile. There will be no need for any additional computer based hardware to support the web-based user interface.

2. Ethernet-based Network Router and/or Network Server Controller(s): The BAS system supplier shall furnish needed quantity of Ethernet-based Network Server Controllers as described in Part 2 of the specification. These controllers will connect directly to the Operator Workstation over Ethernet at a minimum of 100mbps, and provide communication to the Standalone Digital Control Units and/or other Input/Output Modules. Network Server Controllers shall conform to BACnet device profile B-BC. Network controllers that utilize RS232 serial communications or ARCNET to communicate with the workstations will not be accepted. Network Controllers shall be tested and certified by the BACnet Testing Laboratory (BTL) as BACnet Building Controllers (B-BC).

3. Standalone Digital Control Units (SDCUs): Provide the necessary quantity and types of SDCUs to meet the requirements of the project for mechanical equipment control including air handlers, central plant control, and terminal unit control. Each SDCU will operate completely standalone, containing all of the I/O and programs to control its associated equipment. Each BACnet protocol SDCU shall conform to the BACnet device profile B-AAC. BACnet SDCUs shall be tested and certified by the BACnet Testing Laboratory (BTL) as BACnet Advanced Application Controllers (B-AAC).

C. The Local Area Network (LAN) shall be either a 10 or 100 Mpbs Ethernet network supporting BACnet, Modbus, XML and HTTPS for maximum flexibility for integration of building data with enterprise information systems and providing support for multiple Network Server Controllers (NSCs), user workstations and a local host computer system.

D. The Enterprise Ethernet (IEEE 802.3) LAN shall utilize Carrier Sense Multiple/Access/Collision Detect (CSMA/CD), Address Resolution Protocol (ARP) and User Datagram Protocol (UDP) operating at 10 or 100 Mbps.

E. The system shall enable an open architecture that utilizes EIA standard 709.1, the LonTalk™ protocol and/or ANSI / ASHRAE™ Standard 135-2004, BACnet functionality to assure interoperability between all system components. Native support for the LonTalk™ protocol and the ANSI / ASHRAE™ Standard 135-2004, BACnet protocol are required to assure that the project is fully supported by the HVAC open protocols to reduce future building maintenance, upgrade, and expansion costs.
F. The system shall enable an architecture that utilizes a MS/TP selectable 9.6-76.8 KBaud protocol, as a common communication protocol between controllers and integral ANSI / ASHRAE™ Standard 135-2004, BACnet functionality to assure interoperability between all system components. The AAC shall be capable of communicating as a MS/TP device or as a BACnet IP device communicating at 10/100 Mbps on a TCP/IP trunk. The ANSI / ASHRAE™ Standard 135-2004, BACnet protocol is required to assure that the project is fully supported by the leading HVAC open protocol to reduce future building maintenance, upgrade, and expansion costs.

G. LonTalk™ packets may be encapsulated into TCP/IP messages to take advantage of existing infrastructure or to increase network bandwidth where necessary or desired.
 1. Any such encapsulation of the LonTalk™ protocol into IP datagrams shall conform to existing LonMark™ guide functionality lines for such encapsulation and shall be based on industry standard protocols.
 2. The products used in constructing the BMS shall be LonMark™ compliant.
 3. In those instances, in which LonMark™ devices are not available, the BMS system supplier shall provide device resource files and external interface definitions for LonMark devices.

H. The software tools required for network management of the LonTalk™ protocol and the ANSI / ASHRAE™ Standard 135-2004, BACnet protocol must be provided with the system. Drawings are diagrammatic only. Equipment and labor not specifically referred to herein or on the plans and are required to meet the functional intent, shall be provided without additional cost to the Owner. BACnet clients shall comply with the BACnet Operator Workstation (B-OWS) device profile; with the ability to support data read and write functionality. Physical connection of BACnet devices shall be via Ethernet IP or MS/TP. Physical connection of LonWorks devices shall be via Ethernet IP or FTT-10A.

I. The system shall provide support for Modbus TCP and RTU protocols natively, and not require the use of gateways.

J. Complete temperature control system to be DDC with electronic sensors and electronic/electric actuation of Mechanical Equipment Room (MER) valves and dampers and electronic actuation of terminal equipment valves and actuators as specified herein. The BMS is intended to seamlessly connect devices throughout the building regardless of subsystem type, i.e. variable frequency drives, low voltage lighting systems, electrical circuit breakers, power metering and card access should easily coexist on the same network channel.
 1. The supplied system must incorporate the ability to access all data using HTML5 enabled browsers without requiring proprietary operator interface and configuration programs. The system shall not require JAVA to be enabled in the browser.
 2. Data shall reside on a supplier-installed server for all database access.
 3. A hierarchical topology is required to assure reasonable system response times and to manage the flow and sharing of data without unduly burdening the customer’s internal Intranet network.

K. All work described in this section shall be installed, wired, circuit tested and calibrated by factory certified technicians qualified for this work and in the regular employment of the approved manufacturer's local field office. The approved manufacturer's local field office shall have a minimum of 3 years of installation experience with the manufacturer and shall provide documentation in the bid and submittal package verifying longevity of the installing company's relationship with the manufacturer when requested. Supervision, hardware and software engineering, calibration and checkout of the system shall be by the employees of the approved manufacturer's local field office and shall not be subcontracted. The control contractor shall have an in place support facility within 100 miles of the site with factory certified technicians and engineers, spare parts inventory and all necessary test and diagnostic equipment for the installed system, and the control contractor shall have 24 hours/day, 7 days/week emergency service available.
L. Provide the Commissioning, configuration and diagnostic tool (CCDT), color display personnel computer, software, and interfaces to provide uploading/downloading of High Point Count Controllers (AAC), Unitary Equipment Controllers (UEC) and VAV controllers (VAVDDC), monitoring all BACnet objects, monitoring overrides of all controller physical input/output points, and editing of controller resident time schedules.

1.5 SUBMITTALS

A. General: Submittals shall be in accordance with the requirements of Section 01 33 00 Submittals and Section 23 00 10 Mechanical, in addition to those specified herein.

1. All shop drawings shall be prepared in Visio Professional or AutoCAD software. In addition to the drawings, the Contractor shall furnish a CD containing the identical information. Drawings shall be B size or larger.

2. Shop drawings shall include a riser diagram depicting locations of all controllers and workstations, with associated network wiring. Also included shall be individual schematics of each mechanical system showing all connected points with reference to their associated controller. Typicals will be allowed where appropriate.

3. Submittal data shall contain manufacturer's data on all hardware and software products required by the specification. Valve, damper and air flow station schedules shall indicate size, configuration, capacity and location of all equipment.

4. Software submittals shall contain narrative descriptions of sequences of operation, program listings, point lists, and a complete description of the graphics, reports, alarms and configuration to be furnished with the workstation software. Information shall be bound or in a three ring binder with an index and tabs. Diagrams shall be on 11" by 17" foldouts. If color has been used to differentiate information, the printed copies shall be in color.

5. Submit one (1) copy of submittal data and shop drawings to the Engineer for review prior to ordering or fabrication of the equipment. The Contractor, prior to submitting, shall check all documents for accuracy.

6. The Engineer will make corrections, if required, and return to the Contractor. The Contractor will then resubmit with the corrected or additional data. This procedure shall be repeated until all corrections are made to the satisfaction of the Engineer and the submittals are fully approved.

7. The following is a list of post construction submittals that shall be updated to reflect any changes during construction and re-submitted as “As-Built”.

 a. System architecture drawing.
 b. Layout drawing for each control panel
 c. Wiring diagram for individual components
 d. System flow diagram for each controlled system
 e. Instrumentation list for each controlled system
 f. Sequence of control
 g. Binding map
 h. A matrix sheet detailing all system addresses and communication settings for the following:
 1) All IP network addresses & settings
 2) All BMS device addresses & communication settings
 i. Operation and Maintenance Manuals

8. Information common to the entire system shall be provided. This shall include but not be limited to the following.

 a. Product manuals for the key software tasks.
 b. Operating the system.
c. Administrating the system.
d. Engineering the operator workstation.
e. Application programming.
f. Engineering the network.
g. Setting up the web server.
h. Report creation.
i. Graphics creation.
j. All other engineering tasks.
k. System Architecture Diagram.
l. List of recommended maintenance tasks associated with the system servers, operator workstations, data servers, web servers and web clients.
m. Define the task.
n. Recommend a frequency for the task.
o. Reference the product manual that includes instructions on executing the task.
p. Names, addresses, and telephone numbers of installing contractors and service representatives for equipment and control systems.
q. Licenses, guarantees, and warranty documents for equipment and systems.
r. Submit one copy for each building, plus two extra copies.

9. Information common to the systems in a single building shall be provided:
 a. System architecture diagram for components within the building annotated with specific location information.
 b. As-built drawing for each control panel.
 c. As-built wiring design diagram for all components.
 d. Installation design details for each I/O device.
 e. As-built system flow diagram for each system.
 f. Sequence of control for each system.
 g. Binding map for the building.
 h. Product data sheet for each component.
 i. Installation data sheet for each component.
 j. Submit two copies for each building and two extra copies.

10. Software shall be provided:
 a. Submit a copy of all software installed on the servers and workstations.
 b. Submit all licensing information for all software installed on the servers and workstations.
 c. Submit a copy of all software used to execute the project even if the software was not installed on the servers and workstations.
 d. Submit all licensing information for all of the software used to execute the project.
 e. All software revisions shall be as installed at the time of the system acceptance.
 f. Firmware Files
 g. Submit a copy of all firmware files that were downloaded to or pre-installed on any devices installed as part of this project.
 h. This does not apply to firmware that is permanently burned on a chip at the factory and can only be replaced by replacing the chip.
 i. Submit a copy of all application files that were created during the execution of the project.
 j. Submit a copy of all graphic page files created during the execution of the project.
1.6 QUALITY ASSURANCE

A. All bidders must be building automation contractors in the business of installing direct digital control building automation systems for a minimum of 3 years.
 1. The Building Management System contractor shall have a full service facility within 100 miles of the project that is staffed with engineers trained and certified by the manufacturer in the configuration, programming and service of the automation system. The contractor’s technicians shall be fully capable of providing instructions and routine emergency maintenance service on all system components.
 2. Any installing contractor, not listed as prequalified in the Approved Manufacturer’s section, shall submit credentials as detailed in the Pre-bid Submittal section for the engineer’s review 2 weeks prior to bid date. Failure to follow the attached formats shall disqualify potential alternate bidders. Credentials must attest that the contractor meets all requirements of the specification and the Engineer’s judgment regarding approval to bid as an acceptable installer after reviewing the data will be final.

B. All bidders must be authorized distributors or branch offices of the manufacturers specified.

C. The following bidders have been pre-qualified:
 1. Schneider Electric
 2. Or as approved by owner.

D. Any installing contractors or manufacturers interested in participating as acceptable bidders for this project that are not pre-qualified shall furnish a detailed technical pre-bid submittal to the consulting engineer. All information must be submitted 2 weeks prior to the published bid date to allow the engineer adequate time to review the bidder’s credentials.

E. The Pre-Bid submittal shall contain the following information as a minimum:
 1. A profile of the manufacturer and the local installation and service/organization.
 2. Description of how the system meets and achieves all the specified criteria in terms of configuration, operation, and control.
 3. System Architecture with single line riser diagram showing all major components (digital controllers, routers, hubs, etc.) that will be required for this project.
 4. Procedure for commissioning and time required to startup and commission each of the systems for this project.
 5. Contractors approach for the project planning and management.
 6. Product Data Sheets for all components, DDC panels, and all accessories listed per the appropriate specification sections herein.
 7. Examples of actual graphic screens for other similar projects.
 8. Number and types of DDC panels required for this installation.
 9. Number and types of spare points provided with the proposed system.
 10. Recommended spare parts list for components with list price schedule.
 11. List of 2 similar systems in size, point capacity, total installed value, installed and commissioned by the local office with a list of the installers/manufacturers design team members for each project and the owners contact information.
 12. Samples of service offerings and a list of current similar service contracts with contact information.
 13. Resumes for the management team and all employees who will be involved with the project design, commissioning, project management, and after installation service. Resumes should include copies of manufacturer’s certifications for the proposed product line.
14. Copy of this Control Specification in its entirety with a check mark beside each paragraph to signify that the manufacturer's equipment and software shall fully conform to the specified requirement. If the requirement cannot be met, indicate the reasons/limitations and the alternative proposed.

15. An interview may be conducted and the bidder will be requested to make a formal presentation concerning the proposed system and possibly provide an installed project tour prior to a final decision.

F. Each point in the system shall be tested for both hardware and software functionality. In addition, each mechanical and electrical system under control of the BAS will be tested against the appropriate sequence of operation specified herein. Successful completion of the system test shall constitute the beginning of the warranty period. A written report will be submitted to the owner indicating that the installed system functions in accordance with the plans and specifications.

G. The BAS system supplier shall commission and set in operating condition all major equipment and systems, such as the chilled water, hot water and all air handling systems, in the presence of the equipment manufacturer's representatives, as applicable, and the Owner and Architect's representatives. If the vendor is providing an AFDD/CC system, use of the analytics shall be used to help commission the system.

H. The BAS system supplier shall provide a technician for 2 days manpower and engineering services required to assist the HVAC Contractor and Balancing Contractor in testing, adjusting, and balancing all systems in the building. The BAS system supplier shall coordinate all requirements to provide a complete air balance with the Balancing Contractor and shall include all labor and materials in his contract.

I. Startup Testing shall be performed for each task on the startup test checklist, which shall be initialed by the technician and dated upon test was completion along with any recorded data such as voltages, offsets or tuning parameters. Any deviations from the submitted installation plan shall also be recorded.

J. Required elements of the startup testing include:
 1. Measurement of voltage sources, primary and secondary
 2. Verification of proper controller power wiring.
 3. Verification of component inventory when compared to the submittals.
 4. Verification of labeling on components and wiring.
 5. Verification of connection integrity and quality (loose strands and tight connections).
 7. Verification of point checkout.
 8. Each I/O device is landed per the submittals and functions per the sequence of control.
 9. Analog sensors are properly scaled and a value is reported
 10. Binary sensors have the correct normal position and the state is correctly reported.
 11. Analog outputs have the correct normal position and move full stroke when so commanded.
 12. Binary outputs have the correct normal state and respond appropriately to energize/de-energize commands.
 13. Documentation of analog sensor calibration (measured value, reported value and calculated offset).
 14. Documentation of Loop tuning (sample rate, gain and integral time constant).

K. A performance verification test shall also be completed for the operator interaction with the system. Test elements shall be written to require the verification of all operator interaction tasks including, but not limited to the following.
2. Trend data collection and presentation.
3. Alarm handling, acknowledgement and routing.
4. Time schedule editing.
5. Application parameter adjustment.

L. A Startup Testing Report and a Performance Verification Testing Report shall be provided upon test completion.

1.7 COORDINATION

A. Coordinate location of thermostats, humidistats, and other exposed control sensors with plans and room details before installation.

B. Coordinate equipment from other divisions including "Intrusion Detection," "Lighting Controls," "Motor Control Centers," "Panel boards," and "Fire Alarm" to achieve compatibility with equipment that interfaces with those systems.

C. Coordinate supply of conditioned electrical circuits for control units and operator workstation.

D. Coordinate location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 3 Section "Cast-in-Place Concrete".

E. Coordinate with the Owner's IT department on locations for NSC's, Ethernet communication cabling and TCP/IP addresses.

1.8 OWNERSHIP

A. The Owner shall retain licenses to software for this project.

B. The Owner shall sign a copy of the manufacturer's standard software and firmware licensing agreement as a condition this contractor. Such license shall grant use of all programs and application software to the Owner as defined by the manufacturer's license agreement, but shall protect the manufacturer's rights to disclosure of Trade Secrets contained within such software.

C. The licensing agreement shall not preclude the use of the software by individuals under contract to the owner for commissioning, servicing or altering the system in the future. Use of the software by individuals under contract to the owner shall be restricted to use on the owner's computers and only for the purpose of commissioning, servicing, or altering the installed system.

D. All project developed software, files and documentation shall become the property of the Owner. These include but are not limited to:
 1. Server and workstation software
 2. Application programming tools
 3. Configuration tools
 4. Network diagnostic tools
 5. Addressing tools
6. Application files
7. Configuration files
8. Graphic files
9. Report files
10. Graphic symbol libraries
11. All documentation

1.9 WORK BY OTHERS

A. The BAS system supplier shall cooperate with other contractors performing work on this project necessary to achieve a complete and neat installation. To that end, each contractor shall consult the drawings and specifications for all trades to determine the nature and extent of others’ work.

B. The BAS system supplier shall furnish all Control Valves, Sensor Wells for installation by the Mechanical Contractor and/or others.

C. The BAS system supplier shall provide field supervision to the designated contractor for the installation of the following:
 1. Automatic control dampers
 2. Blank-off plates for dampers that are smaller than duct size.
 3. Sheet metal baffles plates to eliminate stratification.
 4. The Electrical Contractor shall provide:
 a. All 120VAC power wiring to motors, heat trace, junction boxes for power to BAS panels.
 b. Furnish smoke detectors and wire to the building fire alarm system. HVAC Contractor to mount devices. BAS system supplier to hardwire to fan shut down.
 c. Auxiliary contact (pulse initiator) on the electric meter for central monitoring of kWh and KW. Electrical Contractor shall provide the pulse rate for remote readout to the BAS. BAS system supplier to coordinate this with the electrical contractor.

D. Prior to delivery to the Project site, ensure that suitable storage space is available to store materials in a well-ventilated area protected from weather, moisture, soiling, extreme temperatures, humidity, and corrosive atmospheres. Materials shall be protected during delivery and storage and shall not exceed the manufacturer stated storage requirements. As a minimum, store indoors in clean, dry space with uniform temperature to prevent condensation. In addition, protect electronics from all forms of electrical and magnetic energy that could reasonably cause damage.

E. Deliver materials to the Project site in supplier’s or manufacturer’s original wrappings and containers, labeled with supplier’s or manufacturer’s name, material or product brand name, and equipment tag number or service name as identified within the Contract Documents.

F. Inspect and report any concealed damage or violation of delivery storage, and handling requirements to the Engineer.

1.10 WARRANTY

A. All components, system software, and parts furnished and installed by the BMS system supplier shall be guaranteed against defects in materials and workmanship for 1 year of substantial completion. Labor to repair, reprogram, or replace these components shall be furnished by the BMS system supplier at no charge during normal working hours during the warranty period. Materials furnished but not installed by the BMS system supplier shall be covered to the extent of the product only. Installation labor shall be the responsibility of the trade contractor performing the installation. All corrective software modifications
made during warranty periods shall be updated on all user documentation and on user and manufacturer archived software disks. The Contractor shall respond to the owner's request for warranty service within 24 standard working hours.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Basis of Design Product: Subject to compliance with requirements, provide products by one of the following pre-qualified manufacturers:
 1. Electric Components
 a. Schneider-Electric Field Devices
 2. Electronic Components
 a. Schneider-Electric Field Devices
 3. Direct Digital Control Systems Field Controller Devices:
 a. Schneider Electric EcoStruxure Building MP/RP BACnet series installed by approved manufacturer's local field office or authorized distributor.
 b. Or approved equal.

2.2 OPEN, INTEROPERABLE SYSTEM ARCHITECTURE

A. A. General
 1. The Building Automation System (BAS) shall consist of Network Server Controllers (NSCs), a family of Standalone Digital Control Units (SDCUs), Administration and Programming Workstations (APWs), and Web-based Operator Workstations (WOWs). The BAS shall provide control, alarm detection, scheduling, reporting and information management for the entire facility, and Wide Area Network (WAN) if applicable.
 2. An Enterprise Level BAS shall consist of an Enterprise Server, which enables multiple NSCs (including all graphics, alarms, schedules, trends, programming, and configuration) to be accessible from a single Workstation simultaneously for operations and engineering tasks.
 3. The Enterprise Level BAS shall support built-in reporting functionality without dependency on other software.
 4. The Enterprise Level BAS shall support standard accessing of data for third party reporting or analytics software.
 5. The Enterprise Level BAS shall be able to host up to 250 servers, or NSCs, beneath it.
 6. For Enterprise reporting capability and robust reporting capability outside of the trend chart and listing ability of the Workstation, a Reports Server shall be installed on a Microsoft Windows SQL based computer. The Reports Server can be installed on the same computer as the Enterprise Server.
 7. The system shall be designed with a top-level 10/100bT Ethernet network, using the BACnet/IP, LonWorks IP, and/or Modbus TCP protocol.

B. Modbus RTU/ASCII (and J-bus), Modbus TCP, BACnet MS/TP, BACnet IP, LonTalk FTT-10A, and WebServices shall be native to the NSCs. There shall not be a need to provide multiple NSCs to support all the network protocols, nor should there be a need to supply additional software to allow all three protocols to be natively supported.

C. A sub-network of SDCUs using the BACnet IP protocol shall connect the local, stand-alone controllers with Ethernet-level Network Server Controllers/IP Routers.
D. The TCP/IP layer connects all of the buildings on a single Wide Area Network (WAN) isolated behind
the campus firewall. Fixed IP addresses for connections to the campus WAN shall be used for each
device that connects to the WAN.

E. The fieldbus layer shall support all of the following types of SDCUs:
 1. BACnet IP SDCU requirements: The system shall consist of one or more BACnet/IP field buses
 managed by the Network Server Controller. The field bus layer shall consist of up to 50 IP
 SDCUs in daisy chain topology, or 39 if using RSTP, per layer, with a max of 5 sub networks in
 daisy chain for a total of 250 SDCUs or 6 sub networks in RSTP for a total of 234 SDCUs. The
 field bus layer shall consist ONLY of BACnet IP SDCUs. No other protocols, including BACnet
 MS/TP, shall be acceptable.

F. The BAS shall be capable of being segmented, through software, into multiple local area networks
 (LANs) distributed over a wide area network (WAN). Workstations can manage a single LAN (or
 building), and/or the entire system with all portions of that LAN maintaining its own, current database.

G. All NSCs, Workstation(s) and Servers shall be capable of residing directly on the owner’s Ethernet
 TCP/IP LAN/WAN with no required gateways. Furthermore, the NSC’s, Workstation(s), and Server(s)
 shall be capable of using standard, commercially available, off-the-shelf Ethernet infrastructure
 components such as routers, switches and hubs. With this design the owner may utilize the investment
 of an existing or new enterprise network or structured cabling system. This also allows the option of the
 maintenance of the LAN/WAN to be performed by the owner’s Information Systems Department as all
 devices utilize standard TCP/IP components.

H. System Expansion
 1. The BAS system shall be scalable and expandable at all levels of the system using the same
 software interface, and the same TCP/IP level and fieldbus level controllers. Systems that require
 replacement of either the workstation software or field controllers in order to expand the system
 shall not be acceptable.

 2. Web-based operation shall be supported directly by the NSCs and require no additional software.

 3. The system shall be capable of using graphical and/or line application programming language for
 the Network Server Controllers.

 4. The system shall be able to operate normally and without restriction at multiple software version
 levels with the only requirement that each element of the hierarchy be at least as new a version
 as the newest version in the level below it. In other words, Enterprise Servers will be able to
 manage NSCs of different version provided that the Enterprise Server was the same or more
 recent version than the most recent NSC version.

I. All Network Server Controllers must natively support the BACnet IP, BACnet MS/TP, LonWorks FTT-10,
 Modbus TCP, Modbus RTU (RS-485 and RS-232), and Modbus ASCII protocols.

2.3 NETWORK SERVER CONTROLLERS (NSC)

A. Network Server Controllers shall combine both network routing functions, control functions, and server
 functions into a single unit.

B. The BACnet NSC shall be classified as a “native” BACnet device, supporting the BACnet Network
 Server Controller (B-BC) profile. Controllers that support a lesser profile such as B-SA are not
 acceptable. NSCs shall be tested and certified by the BACnet Testing Laboratory (BTL) as BACnet
 Network Server Controllers (B-BC).
C. The Network Server Controller shall provide the interface between the LAN or WAN and the field control devices, and provide global supervisory control functions over the control devices connected to the NRS.

D. The NSCs shall be capable of whitelisting IPs to restrict access to a pre-defined list of hosts or devices.

E. Whitelisting of file extensions for documents shall be capable.

F. Encrypted and authenticated communication shall be configurable for non-open protocol communications using TLS 1.2.

G. The NSCs shall support Simple Network Management Protocol version 3 (SNMPv3) for monitoring of the NSCs using a Network Management Tool.

H. The NSCs shall support remote system logging for used by System Information and Event Monitoring (SIEM) software.

I. They shall also be responsible for monitoring and controlling their own HVAC equipment such as an AHU or boiler.

J. They shall also contain graphics, trends, trend charts, alarm views, and other similar presentation objects that can be served to workstations or web-based interfaces. A sufficient number of NSCs shall be supplied to fully meet the requirements of this specification and the attached point list.

K. It shall be capable of executing application control programs to provide:
 1. Calendar functions
 2. Scheduling
 3. Trending
 4. Alarm monitoring and routing
 5. Time synchronization by means of an Internet site including automatic synchronization
 6. Native integration of LonWorks controller data and Modbus controller data or BACnet controller data and Modbus controller data
 7. Network Management functions for all LonWorks based devices

L. Hardware Specifications
 1. Memory:
 a. The operating system of the controller, application programs, and all other portions of the configuration database, shall be stored in non-volatile, FLASH memory. Servers/Controllers shall contain enough memory for the current application, plus required history logging, plus a minimum of 20% additional free memory.
 2. Each NRC shall provide the following on-board hardware for communication:
 a. Two 10/100b Ethernet for communication to Workstations, other NRCs, IP field bus controllers, other SDCUs, and onto the internet.
 1) The two Ethernet ports shall support active switch and BACnet/IP communication protocols.
 2) Support IPv4 addressing
 3) Ethernet port 1 shall support static or DHCP client configuration for communication to Workstation or other NSCs
 4) Ethernet port 2 shall support switch mode or DHCP server to set addressing of DHCP client devices
 5) It shall be possible to disable Ethernet port 2
6) In DHCP server mode, the Ethernet port 2 shall support 50 BACnet/IP field controllers in daisy chain configuration directly from the port.

7) Each NSC shall be able to support a total of 250 IP SDCUs in daisy chain configuration (5 sub networks via switch).

8) If using RSTP (Rapid Spanning Tree Protocol) with a managed switch (with IEEE 802.1W or IEEE 802.1Q-2014 support), Ethernet port 2 shall support up to 39 devices.

9) Each NSC shall be able to support a total of 234 IP SDCUs in RSTP configuration (6 sub networks via managed switch).

10) Where a switch is needed, use a Cisco 9000 Catalyst or IE switch, EtherWAN EX63402-01B, or other equal and approved equivalent.

b. Two RS-485 ports for communication to BACnet MSTP bus or serial Modbus (software configurable).

c. One TP/FT port for communication to LonWorks devices.

d. One device USB port.

e. One host USB port.

3. The NSC shall conform to a small footprint no larger than 100W x 125H x 75D mm (3.94W x 4.92H x 2.95D in).

M. Modular Expandability:

1. The system shall employ a modular I/O design to allow expansion. Input and output capacity is to be provided through plug-in modules of various types. It shall be possible to combine I/O modules as desired to meet the I/O requirements for individual control applications.

2. One shall be able to “hot-change” (hot-swap) the I/O modules preserving the system on-line without any intervention on the software; addressing and configuration shall be automatic.

3. If for any reason the backplane of the modular I/O system were to fail, I/O module addresses will be protected.

N. Hardware Override Switches:

1. All digital outputs shall, optionally, include three position manual override switches to allow selection of the ON, OFF, or AUTO output state. These switches shall be built into the unit and shall provide feedback to the controller so that the position of the override switch can be obtained through software. In addition each analog output shall be equipped with an override potentiometer to allow manual adjustment of the analog output signal over its full range, when the 3 position manual override switch is placed in the ON position.

O. Universal Input Temperatures:

1. All universal inputs directly connected to the NSC via modular expansion shall be capable of using the following thermistors for use in the system without any external converters needed.

 a. 10 kohm Type I (Continuum)
 b. 10 kohm Type II (I/NET)
 c. 10 kohm Type III (Satchwell)
 d. 10 kohm Type IV (FD)
 e. Linearized 10 kohm Type V (FD w/11k shunt)
 f. Linearized 10 kohm (Satchwell)
 g. 1.8 kohm (Xenta)
 h. 1 kohm (Balco)
 i. 20 kohm (Honeywell)
 j. 2.2 kohm (Johnson)
2. In addition to the above, the system shall be capable of using the below RTD sensors, however it is not required that all universal inputs be compatible with them.
 a. PT100 (Siemens)
 b. PT1000 (Sauter)
 c. Ni1000 (Danfoss)

P. Local Status Indicator Lamps:
 1. The NSC shall provide as a minimum LED indication of CPU status, Ethernet LAN status, and field bus status. For each input or output, provide LED indication of the value of the point (On/Off). The LED indication shall support software configuration to set whether the illumination of the LED corresponds to On or Off or whether the color when illuminated is Red or Green.

Q. Real Time Clock (RTC):
 1. Each NSC shall include a real time clock, accurate to 10 seconds per day. The RTC shall provide the following: time of day, day, month, year, and day of week. Each NSC will allow for its own UTC offset, depending upon the time zone. When the time zone is set, the NSC will also store the appropriate times for daylight savings time.
 2. The RTC date and time shall also be accurate, up to 10 days, when the NSC is powerless.
 3. No batteries may be used to for the backup of the RTC.

R. Power Supply:
 1. The 24 VDC power supply for the NSCs shall provide 30 watts of available power for the NSC and associated IO modules. The system shall support the use of more than one power supply if heavily power consuming modules are required.
 2. The power supply, NSC, and I/O modules shall connect power wise and communication wise via the separate terminal base allowing for ease of replacement and no separate or loose wiring.

S. Automatic Restart After Power Failure:
 1. Upon restoration of power after an outage, the NSC shall automatically and without human intervention update all monitored functions, resume operation based on current, synchronize time and status, and implement special start-up strategies as required.

T. Data Retention:
 1. During a power failure, the NSC shall retain all programs, configuration data, historical data, and all other data that is configured to be retained. There shall be no time restriction for this retention and it must not use batteries to achieve it.

U. Software Specifications
 1. The operating system of the controller, application programs, and all other portions of the configuration database such as graphics, trends, alarms, views, etc., shall be stored in non-volatile, FLASH memory. There will be no restrictions placed on the type of application programs in the system. Each NSC shall be capable of parallel processing, executing all control programs simultaneously. Any program may affect the operation of any other program. Each program shall have the full access of all I/O facilities of the processor. This execution of control function shall not be interrupted due to normal user communications including interrogation, program entry, printout of the program for storage, etc.
 2. Each NSC shall have an available capacity of 4 GB of memory. This shall represent 2 GB for application and historical data and 2 GB dedicated for backup storage.

V. User Programming Language:
1. The application software shall be user programmable. This includes all strategies, sequences of operation, control algorithms, parameters, and setpoints. The source program shall be either a script-based structured text or graphical function block based and fully programmable by the user. The language shall be structured to allow for the configuration of control programs, schedules, alarms, reports, telecommunications, local displays, mathematical calculations, and histories. Users shall be able to place comments anywhere in the body of either script or function block programs.

2. Network Server Controllers that use a “canned” program method will not be accepted.

W. Control Software:
 1. The NSC shall have the ability to perform the following pre-tested control algorithms:
 a. Proportional, Integral plus Derivative Control (PID)
 b. Two Position Control
 c. Digital Filter
 d. Ratio Calculator
 e. Equipment Cycling Protection

X. Mathematical Functions:
 1. Each controller shall be capable of performing basic mathematical functions (+, -, *, /), squares, square roots, exponential, logarithms, Boolean logic statements, or combinations of both. The controllers shall be capable of performing complex logical statements including operators such as >, <, =, and, or, exclusive or, etc. These must be able to be used in the same equations with the mathematical operators and nested up to five parentheses deep.

Y. NSCs shall have the ability to perform any or all of the following energy management routines:
 1. Time of Day Scheduling
 2. Calendar Based Scheduling
 3. Holiday Scheduling
 4. Temporary Schedule Overrides
 5. Optimal Start
 6. Optimal Stop
 7. Night Setback Control
 8. Enthalpy Switchover (Economizer)
 9. Peak Demand Limiting
 10. Temperature Compensated Duty Cycling
 11. CFM Tracking
 12. Heating/Cooling Interlock
 13. Hot/Cold Deck Reset
 14. Hot Water Reset
 15. Chilled Water Reset
 16. Condenser Water Reset
 17. Chiller Sequencing

Z. History Logging:
 1. Each NSC controller shall be capable of LOCALLY logging any input, output, calculated value or other system variable either over user defined time intervals ranging from 1 second to 1440 minutes or based upon a user configurable change of value. A minimum of 1000 logs, with a minimum of 100,000 records, shall be stored. Each log can record either the instantaneous,
average, minimum or maximum value of the point. Logged data shall be downloadable to a higher level NSC long term archiving based upon user-defined time intervals, or manual command.

2. For extended trend logging a minimum of 1500 trends shall be capable, with a minimum number of 600,000 records within.

3. Management of a power meter replacement to ensure meter log data is accurate shall be possible in the NSC.

4. Every hardware input and output point, hosted within the NSC and attached I/O modules, shall be trended automatically without the requirement for manual creation, and each of these logs shall log values based upon a change of value and store at least 500 trend samples before replacing the oldest sample with new data.

5. The presentation of logged data shall be built into the server capabilities of the NSC. Presentation can be in time stamped list formats or in a chart format with fully configurable pen colors, weights, scales and time spans.

6. Tooltips shall be present, magnetic, and visible based on users preference.

7. Comments shall be visible whenever viewing the trend log list.

8. System shall give indication of memory usage and be able to alert the user if too many logs are allocated.

9. The BMS software and Network Servers shall support recording of all historical data, independent of any limitation in its local memory, which will be readily available for reporting and analysis without additional configurations or actions.

10. All historical data shall be available for use by the operator to access in BMS or a third-party reporting systems.

AA. Alarm Management:

1. For each system point, alarms can be created based on high/low limits or in comparison to other point values. All alarms will be tested each scan of the NSC and can result in the display of one or more alarm messages or reports.

2. There is no limit to the number of alarms that can be created for any point.

3. Alarms can be configured to be generated based upon a single system condition or multiple system conditions.

4. Alarms will be generated based on an evaluation of the alarm conditions and can be presented to the user in a fully configurable order, by priority, by time, by category, etc. These configurable alarm views will be presented to a user upon logging into the system regardless of whether the log in takes place at a WorkStation or a WebStation.

5. The alarm management system shall support the ability to create and select cause and action notes to be selected and associated with an alarm event. Checklists shall also be possible in order to present to an operator a suggested mode of troubleshooting. When acknowledging an alarm, it shall be possible to assign it to a user of the system such that the user is notified of the assignment and is made responsible for the alarm resolution.

6. Alarms must be capable of being routed to any BACnet workstation that conforms to the B-OWS device profile and uses the BACnet/IP protocol.

BB. Embedded Web Server

1. Each NSC must have the ability to serve out web pages containing the same information that is available from the WorkStation. The development of the screens to accomplish shall not require any additional engineering labor over that required to show them at the WorkStation itself.

2. The NSC shall be configurable to logging all Embedded Web Server access attempts.

3. The NSC shall have the option to redirect HTTP based Embedded Web Server connections to secure, HTTPS connections.

4. The NSC shall authenticate and authorize all users connecting to the Embedded Web Server.
5. The NSC shall provide the ability to configure an automatic logoff for Embedded Web Server users that have not had any activity for an adjustable time period.

CC. The NSC controller shall comply with the following regulatory certifications
1. CE – EN 61000-6-3
2. CE – EN 61000-6-2
3. CE – EN 61010-1
4. CE – EN 61326-1
5. FCC CFR 47 Part 15 Class A
6. RCM
7. RoHS 2011/65/EU
8. China RoHS SJ/T 11364-2014
9. UL916 Energy Management equipment

DD. HMI
1. The NSC shall have an option for a tablet display
2. The tablet display shall be an industrial-grade Human Machine Interface (HMI) that can be locked to the building management application to create a dedicated tool for local operation and maintenance.
3. The tablet display shall provide an easy-to-use interface through which users and engineers can locally access NSC’s
4. The tablet display shall always start in a kiosk mode ensuring the end user can only use the device using the installed integration with the NSC.
5. The tablet display shall always require a password on start up
6. The tablet display shall require a password after a defined period of inactivity
7. The tablet display shall support being handheld or being installed on a control cabinet.
8. The tablet display user interface shall provide touchscreen navigation making it easy to operate and maintain the system.
9. The tablet display shall support robust physical panel mounting mechanisms provided with the product.
10. The tablet display shall have a screen size of 255mm or 10.1 inches
11. The tablet display shall support a screen resolution of 1280 by 800 pixels
12. The tablet display shall have a 16:10 aspect ratio
13. The tablet display shall be based on the Android platform
14. The tablet display shall have an IP54 rated frame that helps protect against dust and moisture.
15. The tablet display shall be powered by a 24 VDC power supply
16. The tablet display can be powered by a 24 VDC through the Y-shaped cable
17. The tablet display shall be able to communicate with the NSC over a wired (USB) connection running BACnet IP over USB.
18. The tablet display shall have an accessory Wi-Fi Module is an option instead of using USB for communication.
a. Through the Wi-Fi module, you can establish wireless communication between the tablet display and the NCS connected to a wireless access point.

b. The Wi-Fi module shall have an adhesive mount Wi-Fi antenna.

c. The Wi-Fi module shall be compliant with IEEE 802.11 b/g/n

d. The Wi-Fi module shall support enhanced wireless security using 64-bit and 128-bit WEP encryption

19. The tablet display shall connect to the NSC using only secure, HTTPS connections via the WebStation functionality of the NSC

20. The tablet display shall connect using a specific user and password combination defined as part of the NSC configuration

EE. Zoning (software defined zoning)

1. It shall be possible for BMS software and Network Servers (NSCs) to support synchronized control of lights, blinds and HVAC across multiple floorplan scenarios.

2. It shall be possible to create multiple synchronized control scenarios of lights/blinds/HVAC based to accommodate different floor plan scenarios.

3. It shall be possible to change synchronized control of lights/blinds/HVAC from one floorplan scenario to another manually or automatically.

4. It shall be possible to adapt synchronized controls of lights, blinds and HVAC to a different floorplan scenario using any device running a standard web browser.

5. It shall be possible for the administrator to manage user and group permissions to view / re-configure floor plan scenarios.

2.4 BACNET IP FIELDBUS CONTROLLERS

A. Controllers – BACnet/IP Protocol

1. All BACnet/IP Fieldbus controllers shall be BACnet Testing Laboratory listed (v12 or later) as specified BACnet Advanced Application Controller (B-AAC)

2. All BACnet/IP Fieldbus controllers shall use the following communication specifications and achieve performance as specified herein:
 a. All controllers shall be able to communicate peer-to-peer without the need for a NSC
 b. Any BACnet/IP Fieldbus controllers on the Ethernet Data Link/Physical layer shall be able to act as a Master to allow for the exchange and sharing of data variables and messages with any other controller connected on the same communication cabling. Slave controllers are not acceptable.

B. The BACnet/IP Fieldbus controllers shall be equipped with 2x 10/100bT Ethernet communication ports with active switch and will support BACnet/IP communication protocols with the following configurations:

1. Supporting IPv4 addressing
2. Supporting Static IP setting, DHCP client and Auto-IP address acquisition
3. It shall be possible to disable Ethernet port 2

C. Topologies

1. BACnet/IP Fieldbus controllers shall support daisy chain topology of up to 50 controllers. In case of any disruption to the communication, a system alarm shall notify the NSC/BMS of the point disruption has occurred.
2. BACnet/IP Fieldbus Controllers shall support RSTP loop whereby up to 39 controllers are supported.
 a. In case of any disruption there shall be no communication interruption
 b. In case of any disruption there shall be system alarms that will inform the operator of the disruption

D. Performance
1. Each BACnet/IP Fieldbus Controllers shall have a 32-bit microprocessor operating at 500 MHz and support a BACnet protocol stack in accordance with the ANSI/ASHRAE Standard 135-2008 and the BACnet Device Profile supported.
2. They shall be multi-tasking, real-time digital control processors consisting of communication controllers, controls processing, power supplies with built-in inputs and outputs.

E. Programmability
1. The BACnet/IP Fieldbus controllers shall support both script programming language and graphical that will be consistent with the NSC.
2. The control program will reside within the same enclosure as the input/output circuitry, that reads inputs and controls outputs
3. All control sequences programmed into the BACnet/IP Fieldbus Controllers shall be stored in non-volatile memory, which is not dependent upon the presence of a battery, to be retained.
4. BACnet/IP Fieldbus controllers shall communicate with the Network Server Controller (NSC) via a BACnet/IP connection at a baud rate of not less than 100 Mbps
5. BACnet/IP Fieldbus controllers shall support a dedicated communications port for connecting and supplying power to a matching room temperature and/or humidity sensor and/or CO2 and/or presence detector that does not utilize any of the I/O points of the controller.
6. BACnet/IP Fieldbus controllers (Excluding VAV) shall support an add-on display to supply and provide access in real-time for monitoring inputs and overriding of outputs
7. The override functionality must be supported by a dedicated processor to assure reliable operation (overriding of output)
8. Each BACnet/IP Fieldbus controller shall have sufficient memory, to support its own operating system and databases, including:
 a. Control processes
 b. Energy management applications
 c. Alarm management
 d. Historical/trend data
 e. Maintenance support applications
 f. Custom processes
 g. Manual override monitoring
9. Each BACnet/IP Fieldbus controller shall support local trend data up to 2x the built-in I/O and at a minimum be capable of holding 5 days @ 15 min intervals locally.
10. The BACnet/IP Fieldbus controller analog or universal input shall use a 16 bit A/D converter.
11. The BACnet/IP Fieldbus controller analog or universal output shall use a 10 bit D/A converter.
12. Built-in I/O: each BACnet/IP Fieldbus controllers shall support:
 a. At minimum 8 and up to 20 configurable IO channels to monitor and to control the following types of inputs and outputs without the addition of equipment inside or outside the DDC Controller cabinet.
 1) Universal Inputs – the following thermistors for use in the system without any external converters needed.
 a) 10 kohm Type I (Continuum)
b) 10 kohm Type II (I/NET)
c) 10 kohm Type III (Satchwell)
d) 10 kohm Type IV (FD)
e) Linearized 10 kohm Type V (FD w/11k shunt)
f) Linearized 10 kohm (Satchwell)
g) 1.8 kohm (Xenta)
h) 1 kohm (Balco)
i) 20 kohm (Honeywell)
j) 2.2 kohm (Johnson)
k) PT100 (Siemens)
l) PT1000 (Sauter)
m) Ni1000 (Danfoss)

2) Analog inputs
 a) Current Input - 0-20 mA
 b) Voltage Input 0-10 Vdc

3) Digital inputs from dry contact closure, pulse accumulators, voltage sensing.

4) Digital outputs

5) Analog outputs of 4-20 mA and/or 0-10 Vdc

13. Real Time Clock (RTC):
 a. Provide internal clocks for all BACnet Controllers (B-AAC) using BACnet time synchronization services.
 1) Automatically synchronize system clocks daily from an operator-designated controller.
 2) The system shall automatically adjust for daylight saving time.
 b. Each BACnet/IP Fieldbus controller shall include a real time clock, accurate to +/-1 minute per month.
 c. The RTC shall provide the following: time of day, day, month, year, and day of week.
 d. The RTC date and time shall also be accurate up to 7 days, from when the BACnet/IP Fieldbus controller has lost power with no reliance on.

14. The BACnet/IP Fieldbus controller for Variable Air Volume (VAV) applications
 a. The BACnet/IP Fieldbus controller for VAV applications shall include a built-in ‘flow thru’ differential pressure transducer
 b. The VAV differential pressure transducer shall have a measurement range of 0 to 1 in. W.C. and measurement accuracy of ±5% at 0.001 to 1 in. W.C. and a minimum resolution of 0.001 in. W.C., insuring primary air flow conditions shall be controlled and maintained to within ±5% of setpoint at the specified minimum and maximum air flow parameters
 c. The BACnet/IP FieldBus controller for VAV applications shall support a dedicated commissioning tool for air flow balancing
 d. The BACnet/IP Fieldbus controller for VAV applications shall require no programing for air balancing algorithm
 e. All balancing parameters shall be synchronized in NSC

15. Each BACnet/IP Fieldbus controller shall have a minimum of 10% spare capacity for each point type represented on the controller for future point connection

16. Power Requirements. 24VDC (21 to 33 VDC) and 24 VAC +/-20% with local transformer power

17. Each BACnet/IP Fieldbus controller shall be accredited for smoke control and smoke management within a fully IP control solution

18. The BACnet/IP Fieldbus controller shall comply with the following regulatory certifications
 a. CE - EMCD 2014/30/EU
b. CE LVD 2014/35/EU
c. FCC CFR 47 Part 15 Class B
d. RCM
e. RoHS 2011/65/EU
f. China RoHS SJ/T 11364-2014
g. UL2043 (Plenum space mounting)
h. UL916 Open-Energy Management equipment
i. UL916 Energy Management equipment

19. Intelligent Space Sensor Interface –
 a. The BACnet/IP Fieldbus controllers shall support a dedicated RJ45 communication port to
 communicate and power up to 4 intelligent wall mount sensors without the use of on-board
 inputs or outputs
 b. It shall be possible to disable the RJ45 communication port.

20. The BACnet/IP Fieldbus controller for Connected Room solutions
 a. All BACnet/IP Fieldbus controllers shall be BACnet Testing Laboratory listed (v14 or later)
 as specified BACnet Advanced Application Controller (B-AAC)
 b. All BACnet/IP Fieldbus controllers shall use the following communication specifications and
 achieve performance as specified herein:
 1) All controllers shall be able to communicate peer-to-peer without the need for an
 NSC
 2) Any BACnet/IP Fieldbus controllers on the Ethernet Data Link/Physical layer shall be
 able to act as a Master to allow for the exchange and sharing of data variables and
 messages with any other controller connected on the same communication cabling.
 Slave controllers are not acceptable.
 c. The BACnet/IP Fieldbus controllers shall be equipped with 2x 10/100bT Ethernet
 communication ports with active switch and will support BACnet/IP communication
 protocols with the following configurations:
 1) Supporting IPv4 addressing
 2) Supporting Static IP setting, DHCP client and Auto-IP address acquisition
 3) It shall be possible to disable Ethernet port 2
 4) Each BACnet/IP controller shall be configurable to restrict communications to only
 whitelisted IP addresses.
 d. Topologies
 1) BACnet/IP Fieldbus controllers shall support daisy chain topology of up to 50
 controllers. In case of any disruption to the communication, a system alarm shall
 notify the NSC/BMS of the point disruption has occurred.
 2) BACnet/IP Fieldbus Controllers shall support RSTP loop whereby up to 39
 controllers are supported.
 a) In case of any disruption there shall be no communication interruption
 b) In case of any disruption there shall be system alarms that will inform the
 operator of the disruption
 e. Performance
1) Each BACnet/IP Fieldbus Controllers shall have a 32-bit microprocessor operating at 500 MHz and support a BACnet protocol stack in accordance with the ANSI/ASHRAE Standard 135-2012 and the BACnet Device Profile supported.

2) They shall be multi-tasking, real-time digital control processors consisting of communication controllers, controls processing, power supplies with built-in inputs and outputs.

3) Each BACnet/IP Fieldbus Controllers shall support upgrade of its firmware with no impact to its operation

f. Programmability

1) The BACnet/IP Fieldbus controllers shall support both script programming language and graphical that will be consistent with the NSC.

2) The control program will reside within the same enclosure as the input/output circuitry, that reads inputs and controls outputs

3) All control sequences programmed into the BACnet/IP Fieldbus Controllers shall be stored in non-volatile memory, which is not dependent upon the presence of a battery, to be retained.

4) The BACnet/IP Fieldbus controllers shall communicate with the Network Server Controller (NSC) via a BACnet/IP connection at a baud rate of not less than 100 Mbps

5) The BACnet/IP Fieldbus controllers shall support two RS485 communication ports for connecting and supplying power to a range of protocol types

a) BACnet/IP Fieldbus controllers shall support configurable selection of the supported protocol on the RS485 communications ports,

b) BACnet/IP Fieldbus controllers shall support a communications capability for connecting and supplying power to a matching room temperature and/or humidity sensor and/or CO2 and/or presence detector that does not utilize any of the I/O points of the controller.

c) BACnet/IP Fieldbus controllers shall support a communications capability for connecting and supplying power to a matching connected module for the purpose of control of lights and blinds that do not utilize any of the I/O points of the controller.

d) BACnet/IP Fieldbus controllers shall support a communications capability for connecting to open market Modbus devices

g. BACnet/IP Fieldbus controllers shall support on-board Bluetooth Low Energy radio to support:

1) Mobile application shall be available for controller commissioning

2) Mobile applications shall be available for building occupants

3) It shall be possible to disable the Bluetooth Low Energy Radio

4) The BACnet/IP Fieldbus controller shall support a connection for an external antenna.

h. BACnet/IP Fieldbus controllers shall support an optional plug-in Zigbee 3.0 radio for the purpose of connecting to wireless Zigbee sensors and devices.

1) It shall be possible to connect to up to 16 Zigbee sensors or devices

2) The controller shall support a range of different sensors and devices for easy commissioning

3) The controller shall be able to connect to a Green Power Zigbee temperature and humidity sensor with 10 years of battery life
4) The controller shall be able to connect to a Zigbee temperature, humidity and CO2 sensor with 10 years of battery life

i. Controllers that only support older versions of the Zigbee 3.0 are not approved due to the lack of security layer

j. It shall be possible to connect the Zigbee radio directly to the BACnet/IP RP Fieldbus controller.

k. It shall be possible to install the Zigbee radio in the ceiling using a purpose designed extension cable and ceiling housing when radio reception at the controller may be compromised.

l. Each BACnet/IP Fieldbus controller shall have sufficient memory, to support its own operating system and databases, including:
 1) Control processes
 2) Energy management applications
 3) Alarm management
 4) Historical/trend data
 5) Maintenance support applications
 6) Custom processes

m. In the case of communication disruption between the BACnet/IP Fieldbus controller and NSC/BMS, each BACnet/IP Fieldbus controller shall support storage of local trend data up to 2x the number of its built-in I/O at the collection rate of 5 min for 5 days.

n. The BACnet/IP Fieldbus controller analog or universal input shall use a 16-bit A/D converter.

o. The BACnet/IP Fieldbus controller analog or universal output shall use a 10-bit D/A converter.

p. Built-in I/O: each BACnet/IP Fieldbus controllers shall support:
 1) Up to 8 configurable IO channels to monitor and to control the following types of inputs and outputs without the addition of equipment inside or outside the DDC Controller cabinet.
 a) Universal Inputs – the following thermistors for use in the system without any external converters needed.
 b) 10K Ohm Type I (Continuum)
 c) 10K Ohm Type II (I/NET)
 d) 10K Ohm Type III (Satchwell)
 e) 10K Ohm Type IV (FD)
 f) Linearized 10K Ohm Type V (FD w/11k shunt)
 g) Linearized 10K Ohm (Satchwell)
 h) 1.8K Ohm (Xenta)
 i) 1K Ohm (Balco)
 j) 20K Ohm (Honeywell)
 k) 2.2K Ohm (Johnson)
 l) PT100 (Siemens)
 m) PT1000 (Sauter)
 n) Ni1000 (Danfoss)
 o) Voltage Input - 0-10 Vdc
 p) Digital inputs from dry contact closure, pulse accumulators, voltage sensing.
q) Digital outputs
r) Analog outputs 0-10 Vdc

q. Internal Clock
1) Provide internal clocks for all BACnet Controllers (B-AAC) using BACnet time synchronization services.
 a) Automatically synchronize system clocks daily from an operator-designated controller.
 b) The system shall automatically adjust for daylight saving time.

2) Each BACnet/IP Fieldbus controller shall include a real time clock, accurate to +/-1 minute per month.

3) The RTC shall provide the following: time of day, day, month, year, and day of week.
4) The RTC date and time shall also be accurate up to 7 days, from when the BACnet/IP Fieldbus controller has lost power with no reliance on batteries

r. Each BACnet/IP Fieldbus controller shall have a minimum of 10% spare capacity for each point type represented on the controller for future point connection

s. Power Requirements. 24VDC (21 to 33 VDC) and 24 VAC +/-20% with local transformer power

t. Power Requirements. A line voltage version shall be available 230 VAC

u. In the case of power disruption, each BACnet/IP Fieldbus controller shall support power failure recovery within 10 seconds and resume operation from where the disruption had occurred

v. The BACnet/IP Fieldbus controller shall be able to be plenum mounted (UL2043 compliant)
w. The BACnet/IP Fieldbus controller shall meet the open class standard of UL916 permitting its installation without secondary enclosure where appropriate

x. The BACnet/IP Fieldbus controller shall comply with the following regulatory certifications
 1) CE - EMCD 2014/30/EU
 2) CE LVD 2014/35/EU
 3) FCC CFR 47 Part 15 Class B
 4) RCM
 5) RoHS 2011/65/EU
 6) China RoHS SJ/T 11364-2014
 7) UL2043 (Plenum space mounting)
 8) UL916 Open-Energy Management equipment
 9) UL916 Energy Management equipment

y. Intelligent Space Sensor Interface - The BACnet/IP Fieldbus controllers shall support an RJ45 communication port to communicate and power up to 4 intelligent wall mount sensors without the use of on-board inputs or outputs
 1) It shall be possible to disable the RJ45 communication port

z. Integrations - Connected Room
 1) The controller shall be capable of controlling lighting fixtures thru various open protocols listed below. this shall be achieved thru on-board I/O on the controller or via expansion modules (of the BACnet/IP controller) and will be capable of supporting the following:
a) The DALI expansion module shall be certified and capable of full DALI2 control for individual and groups of lights (up to 32 ballasts or LED drivers and a maximum of 16 groups).
b) During zero light output it shall be possible to fully shut down the ballasts thereby minimizing any leakage current.
c) The controller / expansion module shall be certified for multi-master functionality thereby allowing DALI pushbuttons sensors and dimmers to be mounted on the DALI communication bus.
d) The DALI expansion module shall be rated to 10A in total (Max 5A per channel)
e) The DALI expansion module shall support DALI version-1 control gear
f) The DALI expansion module shall support DALI-1 version control gear.
g) The DALI expansion module shall support Discharge lamps
h) The DALI expansion module shall support LED
i) The DALI expansion module shall support color control (Device type 8)
j) The DALI expansion module shall support feedback from control gear (including lamp failure feedback)
k) The DALI expansion module shall support addressing and grouping of control gear.
l) The 0-10V expansion modules shall be capable of on/off/dim of light using 0-10V dimming signal.
m) During zero light output it shall be possible to fully shut down the ballasts thereby minimizing any leakage current.
n) It shall be possible to interface and control lighting that are dimmed using Phase cut dimming the controller/interface shall be capable of automatically detecting the appropriate leading or trailing edge control mechanism that may be needed depending on the type of load.

2) The controller shall be capable of controlling blinds and shades thru various open protocols listed below. this shall be achieved thru on-board I/O on the controller or via expansion modules (of the BACnet/IP controller) and will be capable of supporting the following:

a) The controller/ expansion modules shall be capable of interfacing with and controlling blind motors that uses low voltage Standard Motor Interface (SMI) communication.
b) The controller/ expansion modules shall be capable of interfacing with and controlling blind motors that use high voltage SMI communication.
c) The controller/ expansion modules shall be capable of interfacing with and controlling blind motors using low voltage (24V) relays.
d) The controller/ expansion modules shall be capable of interfacing with and controlling blind motors using line voltage relays.

3) It shall be possible for the controller to interface with third party Modbus devices sensors, pushbuttons and glass touch panels

4) It shall be possible for the controller to interface with KNX sensors and push button devices

5) It shall be possible for the controller to communicate to wireless devices such as sensors, power meters, and wireless lighting control gateways via Zigbee 3.0.
a) Controllers using earlier Zigbee standards shall not be acceptable.

6) It shall be possible to rezone and partition spaces using a graphical software, that works using floor plan maps and allows the user to create zones by positioning
HVAC equipment, lights, blinds and sensors directly on the map. It shall then be possible to assign them to zones

7) It shall be possible to connect to four advanced sensors with capability for sensing occupancy and light levels. The sensor shall be powered by the controller and will not require batteries for operation.

8) It shall be possible to control lights/ blinds and HVAC functions such as fan speed and temperature via an optional remote control that can be located anywhere conveniently within the room or mounted on the wall and communicates to the controller securely via blue-tooth

9) It shall be possible for the controller to measure the power consumed by the different devices connected to the controller such as lighting HVAC and blinds

10) Lighting Control Interfaces
 a) Mobile Based Personal Control Interface - an integrated mobile application shall provide current status of the light and blind in the room and enable each room occupant with the ability to:
 b) Dim, brighten lights and turn them on and off
 c) And for blinds: tilt, vertical up or down
 d) Ability to select scenes
 e) Control HVAC

11) The Connected Room Solution will be fully programmable capable of supporting different control strategies locally.

12) Standard applications shall be available for download from a central repository, which will allow common configurations such as those listed below to be easily configured.
 a) Occupied state
 b) Unoccupied state
 c) Load Shed Mode
 d) Daylight Harvesting
 e) Time Clock Scheduling

13) The integration modules shall comply with the following regulatory certifications
 a) CE - EMCD 2014/30/EU
 b) CE LVD 2014/35/EU
 c) FCC CFR 47 Part 15 Class B
 d) RCM
 e) RoHS 2011/65/EU
 f) China RoHS SJ/T 11364-2014
 g) UL2043 (Plenum space mounting)
 h) UL916 Energy Management

21. The BACnet/IP Fieldbus controller for remote IO
 a. It shall be possible to extend Inputs / Outputs required in NSC or BACnet/IP Fieldbus Controllers over the IP network
 b. The BACnet/IP IO expansion device shall be equipped with 2x 10/100bT Ethernet communication ports with active switch supporting the following configurations:
 1) Supporting IPv4 addressing
 2) Supporting Static IP setting, DHCP client and Auto-IP address acquisition
 3) It shall be possible to disable Ethernet port 2
c. The BACnet/IP IO expansion device shall support daisy and RSTP topologies

d. The BACnet/IP I/O expansion device shall be capable of sharing its local I/O resources with one or multiple applications distributed across one or multiple NSCs or BACnet/IP Fieldbus Controllers.

e. The BACnet/IP I/O expansion device shall support BACnet Alarm and Trend locally

f. Outputs of the BACnet/IP I/O expansion device shall support user configurable fallback value that is triggered in case of communication disruption.

F. Commissioning Tool - The BACnet/IP Fieldbus controllers shall be supported via a dedicate mobile based commissioning tool for configuration, programming, air balancing and I/O checkout:

1. The Commissioning Tool shall be supported across: iOS, Android and Windows 10 platforms

2. The Commissioning Tool shall be available for download on App Store, Google Store and Windows Store

3. Commissioning Tool Interface to BACnet/IP Fieldbus controllers shall be via Bluetooth or via a Wi-Fi access point on the LAN

4. Functionality

 a. Device Configuration – the Commissioning Tool shall be able to set or edit all Network configurations associated with the BACnet/IP Fieldbus controller

 b. Programming – The Commissioning Tool shall be able to load offline engineered applications directly in to the controller directly

 c. Air Balancing

 1) The Commissioning Tool shall allow the air balancer to manually control the action of the actuator including the following function: open VAV damper, close VAV damper, open all VAV dampers, and close all VAV dampers.

 2) The Commissioning Tool shall be able to generate Air Balancing report

 d. DALI lighting commissioning

 1) The Commissioning tool shall allow the engineer to test the operation of DALI control gear.

 2) The commissioning tool shall allow the engineer to wink the DALI control gear.

 3) The commissioning tool shall indicate the status of the DALI control gear.

 e. 0-10V lighting commissioning

 1) The Commissioning tool shall allow the engineer to test the operation of 0-10V lights.

 2) The commissioning tool shall allow the engineer to wink the 0-10V lights.

 f. Blind and shade commissioning

 1) The Commissioning tool shall allow the engineer to test the operation of blinds and shades.

5. IO Checkout

 a. The Commissioning Tool shall be able to support overriding of the outputs and reading value of inputs live that includes light and blind points and their configuration

 b. The Commissioning Tool shall be able to support generation of I/O checkout report

6. There shall be no limit to the number of Commissioning Tools that can be used on a network segment.
G. Intelligent Space Sensors - The BACnet/IP Fieldbus controller shall support a dedicated RJ45 communication port to communicate and power up to 4 intelligent wall mount sensors without the use of on board inputs or outputs
 1. The Intelligent Space Sensor shall communicate with the BACnet/IP Fieldbus controller through the sensor port and via category 5 or category 6 cable
 2. The Intelligent Space Sensor shall provide 2 RJ45 communication ports that will allow communication with parent BACnet/IP Field controller upstream and additional Intelligent Space Sensors downstream
 3. The Intelligent Space Sensor shall provide ambient space condition sensing without the use of hardware I/O

H. Each Intelligent Space Sensor shall provide a color touch display with:
 1. Minimum 61 mm (2.4") by 61 mm (2.4") display
 2. Backlit

I. The Intelligent Space Sensor shall be capable of displaying measured space temperature from 0 to 50 °C (32 to 122 °F) with accuracy of ±0.2 °C (±0.4 °F) selectable for 0.1 or 1 degree display resolution of °F or °C
 1. Sensing Element: 10k Type 3 Thermistor
 2. Accuracy of ±0.2 °C (±0.4 °F)
 3. Resolution: 0.1 or 1 degree display resolution
 4. Range: 0 to 50 °C (32 to 122 °F)

J. The Intelligent Space Sensor shall have the option for humidity sensor support sensing humidity from 0 % RH to 100 % RH Digital humidity indication (selectable for 0.1 or 1% RH with selectable display resolution of 0.1 or 1 % RH
 1. Accuracy: ±2 % RH
 2. Resolution: 0.1 or 1 % RH
 3. Range: 0 % RH to 100 % RH

K. The Intelligent Space Sensor shall have the option for support of CO2 sensor with display resolution with 0 to 2000 ppm resolution
 1. Accuracy: ±30 ppm ±2% of measured value
 2. Range: 0 to 2,000 ppm
 3. Operating elevation: 0 to 16,000 ft.
 4. Temperature dependence: 0.11% FS per °F
 5. Stability: <2% of FS over life of sensor (15 years)
 6. Sensing method: Non-dispersive infrared (NDIR), diffusion sampling

L. The Intelligent Space Sensor shall have the option for motion sensor

M. Display options: The Intelligent Space Sensor shall be capable of displaying the following elements:
 1. Space temperature
 2. Cooling space temperature set point
 3. Heating space temperature set point
 4. Current heating or cooling mode
 5. Current occupancy mode
 6. Fan speed
2.5 DDC SENSORS AND POINT HARDWARE

A. Temperature Sensors
 1. Acceptable Manufacturers: Veris Industries
 2. All temperature devices shall use precision thermistors accurate to +/- 1 degree F over a range of –30 to 230 degrees F. Space temperature sensors shall be accurate to +/- .5 degrees F over a range of 40 to 100 degrees F.
 3. Room Sensor: Standard space sensors shall be available in an [off white][black] enclosure made of high impact ABS plastic for mounting on a standard electrical box. Basis of Design: Veris TW Series
 a. Where manual overrides are required, the sensor housing shall feature both an optional sliding mechanism for adjusting the space temperature setpoint, as well as a push button for selecting after hours operation.
 b. Where a local display is specified, the sensor shall incorporate an LCD display for viewing the space temperature, setpoint and other operator selectable parameters. Using built-in buttons, operators shall be able to adjust setpoints directly from the sensor.
 4. Duct Probe Sensor: Sensing element shall be fully encapsulated in potting material within a stainless steel probe. Usable in air handling applications where the coil or duct area is less than 14 square feet. Basis of Design: Veris TD Series
 5. Duct Averaging Sensor: Averaging sensors shall be employed in ducts which are larger than 14 square feet. The averaging sensor tube shall contain at least one thermistor for every 3 feet, with a minimum tube length of 6 feet. The averaging sensor shall be constructed of rigid or flexible copper tubing. Basis of Design: Veris TA Series
 6. Pipe Immersion Sensor: Immersion sensors shall be employed for measurement of temperature in all chilled and hot water applications as well as refrigerant applications. Provide sensor probe length suitable for application. Provide each sensor with a corresponding pipe-mounted sensor well, unless indicated otherwise. Sensor wells shall be stainless steel for non-corrosive fluids below 250 degrees F and 300 series stainless steel for all other applications. Basis of Design: Veris TI Series
 7. Outside Air Sensor: Provide the sensing element on the building's north side. Sensing element shall be fully encapsulated in potting material within a stainless steel probe. Probe shall be encased in PVC solar radiation shield and mounted in a weatherproof enclosure. Operating range -40 to 122 F, Basis of Design: Veris TO Series
 8. A pneumatic signal shall not be allowed for sensing temperature.

B. Liquid Differential Pressure Transmitters:
 1. Acceptable Manufacturer: Veris Industries
 2. Transmitter shall be microprocessor based
 3. Transmitter shall use two independent gauge pressure sensors to measure and calculate differential pressure
 4. Transmitter shall have 4 switch selectable ranges
 5. Transmitter shall have test mode to produce full-scale output automatically.
 6. Transmitter shall have provision for zeroing by pushbutton or digital input.
7. Transmitter shall have field selectable outputs of 0-5V, 0-10V, and 4-20mA.
8. Transmitter shall have field selectable electronic surge damping
9. Transmitter shall have an electronic port swap feature
10. Transmitter shall accept 12-30 VDC or 24 VAC supply power
11. Sensor shall be 17-4 PH stainless steel where it contacts the working fluid.
12. Performance:
 a. Accuracy shall be ±1% F.S. and ±2% F.S. for lowest selectable range
 b. Long term stability shall be ±0.25%
 c. Sensor temperature operating range shall be -4° to 185°F
 d. Operating environment shall be 14° to 131°F; 10-90% RH noncondensing
 e. Proof pressure shall be 2x max. F.S. range
 f. Burst pressure shall be 5x max. F.S. range
13. Transmitter shall be encased in a NEMA 4 enclosure
14. Enclosure shall be white powder-coated aluminum
15. Transmitter shall be available with a certification of NIST calibration
16. Transmitter shall be preinstalled on a bypass valve manifold
17. Basis of Design: Veris PW

C. Current Sensors
1. Current status switches shall be used to monitor fans, pumps, motors and electrical loads.
 Current switches shall be available in split core models, and offer either a digital or an analog
 signal to the automation system. Acceptable manufacturer is Veris Industries

D. Current Status Switches for Constant Load Devices
1. Acceptable Manufacturer: Veris Industries
2. General: Factory programmed current sensor to detect motor undercurrent situations such as belt
 or coupling loss on constant loads. Sensor shall store motor current as operating parameter in
 non-volatile memory. Push-button to clear memory.
4. Split core sensor, induced powered from monitored load and isolated to 600 VAC rms. Sensor
 shall indicate status from 0.5 A to 175 A.
5. Normally open current sensor output. 0.1A at 30 VAC/DC.

E. Current Status Switches for Constant Load Devices (Auto Calibration)
1. Acceptable Manufacturer: Veris Industries.
2. General: Microprocessor based, self-learning, self-calibrating current switch. Calibration-free
 status for both under and overcurrent, LCD display, and slide-switch selectable trip point limits. At
 initial power-up automatically learns average current on the line with no action required by the
 installer
3. Split core sensor, induced powered from monitored load and isolated to 600 VAC rms. Sensor
 shall indicate status from 2.5 A to 200 A.
4. Display: Backlit LCD; illuminates when monitored current exceeds 4.5A
5. Nominal Trip Point: ±40%, ±60%, or on/off (user selectable)
6. Normally open current sensor output. 0.1A at 30 VAC/DC.
7. Basis of Design: Veris Model H11D.
F. Current Status Switches for Variable Frequency Drive Application
 1. Acceptable Manufacturer: Veris Industries.
 2. General: Microprocessor controlled, self-learning, self-calibrating current sensor to detect motor undercurrent and overcurrent situations such as belt loss, coupling shear, and mechanical failure on variable loads. Sensor shall store motor current as operating parameter in non-volatile memory. Push-button to clear memory and relearn.
 4. Alarm Limits: ±20% of learned current in every 5 Hz freq. band
 5. Split core sensor, induced powered from monitored load and isolated to 600 VAC rms. Sensor shall indicate status from 1.5 A to 150 A and from 12 to 115 Hz.
 6. Normally open current sensor output. 0.1A at 30 VAC/DC.

G. Pressure Independent Control Valves
 1. Note: When selecting pressure independent valves the specifier should also revise spec to NOT include balancing valves and also modify to NOT require the individual balancing of each coil/valve combination.
 2. NPS 2 and Smaller: PN 16, stainless steel components.
 3. NPS 2½ through 10: Class 125 cast iron body per ASME B16.1-2010, Material class B per ASTM A 126-04 (2014), stainless steel components.
 4. Accuracy NPS ½” and Smaller: The control valves shall accurately control the flow from 0...100% rated flow with a differential pressure range of 2.32...58 psi for low and standard flow units, 5...58 psi for high flow units within 5% of set flow value.
 5. Accuracy NPS 1 through 1¼: The control valves shall accurately control the flow from 0...100% rated flow with a differential pressure range of 2.9...58 psi for standard flow units, 5...58 psi for high flow units within 5% of set flow value.
 6. Accuracy NPS 1½ through 4: The control valves shall accurately control the flow from 0...100% rated flow with a differential pressure range of 4.35...58 psi within 5% of set flow value.
 7. Accuracy NPS 5 through 10: The control valves shall accurately control the flow from 0...100% rated flow with a differential pressure range of 5.8...58 psi for standard flow units, 8.7...58 psi for high flow units within 5% of set flow value.
 8. Flow Characteristics: Linear Control, selectable to equal percentage at the proportional valve actuator.
 10. Position feedback output signal integrated into all proportional actuators.
 11. 100% authority with modulating below 1% regardless of flow settings.
 12. No cartridges requiring replacement or maintenance.
 13. Close ratings shall be 232 psi for all valve sizes.
 14. Basis of Design: Schneider Electric SmartX PICV, or approved equal.

H. Control Valve Actuators
 1. ½” to ¾” Ball Valve Actuators
 a. Size for torque required for valve close-off pressure for system design.
 b. Coupling: Direct coupled to valve body without use of external devices/tools
 c. Auxiliary End Switch (optional) to be SPST 24 Vac/Vdc,101 mA to 5 mA maximum on selected two-position models.
 d. Controller Signal Two-position, Floating or Proportional (0...5 Vdc, 0...10 Vdc, 5...10 Vdc, or 4...20 mA dc). Design allows for change via DIP switches without removal of cover.
e. Manual operating lever and position indicator must be standard.
f. Power Requirements: 24 Vac for floating, proportional, and 110…230 Vac for two position multi-voltage types

g. Actuators must be available with either Spring Return (SR) or Non-Spring Return (NSR) models.

h. Operating Temperature Limit Floating is to be 32…140°F (0…60°C) Proportional 32…140°F (0…60°C) Two-Position 32…169°F (0…76°C)

i. Wiring (depending on model) Removable Terminal Block, 10 ft. (3.05 m) Plenum Cable, 18 in. (45 cm) Appliance Wire

j. Locations must be rated NEMA 2, IEC IP31. (Indoor Use Only.) Actuators with terminal block or plenum cable leads are plenum rated per UL file number E9429.

k. Agency Listings: ISO 9001, cULus, and CE.
l. Basis of Design: Schneider Electric VBB/VBS, or approved equal.

2. ½” to 3” 2-way and ½” to 2” 3-way Ball Valves Actuators

a. Size for torque required for valve close-off pressure for system design.

b. Actuators are to be available in spring return (SR) and non-spring return (NSR) models. Spring Return (SR) actuators are to provide a choice to return direction.

c. Actuators are to be available in models for two-position, floating and proportional control.

d. All actuator models are to be equipped with pigtail leads, manual override, and auxiliary switch(es)

e. Operating temperatures’ Floating Non-Spring Return (NSR) with 33 lb.-in. of torque must be -25 to 130 °F (-32 to 55°C). All other actuators are to -22 to 140 °F (-30 to 60 °C)

f. Actuators must be NEMA 2 rated.

g. Agency Listings: ISO 9001, cULus, and CE.

h. Basis of Design: Schneider Electric VB-2000, or approved equal.

3. ½” to 2” Bronze, Linear Globe Valve Actuators/67 or 78 lbs. force

a. Actuator must have bi-color LED status indication for motion indication, auto calibration and alarm notification.

b. When the actuator is properly mounted must have a minimum of a NEMA 2 (IP53) rating.

c. Actuators are to be non-spring return.

d. Actuators are to be floating (used for two-position) or proportional models.

e. Proportional models will have optional models with a position output signal with field selectable 2…10 Vdc and 0…10 Vdc input signals and selectable input signal direct or reverse acting.

f. Actuator must have auto calibration which provides precise control by scaling the input signal to match the exact travel of the valve stem

g. Actuators must come in models with Pulse Width Modulated (PWM) with field selectable 0.59 to 2.93 sec and 0.1 to 25.5 sec input signal ranges with a position output signal

h. Actuators must have manual override with automatic release.

i. Models with position feedback output signal include field selectable 2…10 Vdc or 0…5 Vdc output signal

j. Removable wiring screw terminal with ½” conduit opening.

k. Actuator operating temperature ranges:

1) When controlling fluid up to 266°F (130°C) = ambient air temperature is to be 23…131°F (-5…55°C)

2) Fluid up to 281°F (138°C) = 23…127°F (-5…53°C)

3) Fluid up to 340°F (171°C) = 23…115°F (-5…46°C)
4) Fluid up to 400°F (204°C) = 23…102°F (-5…39°C)

 l. Actuator agency Listings: cUL-us LISTED mark, NEMA 2, NEC class 2 FCC part-15 class B, Canadian ICES-003, ESA registered, Plenum rated per UL 20430

 m. Basis of Design: Schneider Electric MG350V, or approved equal.

4. ½" to 2" Bronze, Linear Globe Valve Actuators/105 lbs. force

 a. Actuators must have Two- Position, Floating, and Proportional models.

 b. Proportional models will a controller input signal of either a 0…10 Vdc, 2…10 Vdc, 4…20 mAdc, 0…3 Vdc, or 6…9 Vdc. Control function direct/reverse action is switch selectable on most models.

 c. Actuator force is to be 105 lb. (467 newton) with ½" (13 mm) nominal linear stroke

 d. Power requirements 24 Vac, 120 Vac or 230 Vac depending on model.

 e. Actuator housings rated for up to NEMA 2/ IP54.

 f. Actuator is to have overload protection throughout stroke.

 g. Actuator Operating temperature -22…140°F (-30…60°C) up to a maximum valve fluid temperature of 366°F (186°C).

 h. Actuator must automatically set input span to match valve travel.

 i. Actuator must have manual override to allow positioning of valve and preload.

 j. Actuator is to be spring return.

 k. Actuator is to mount directly to valves without separate linkage.

 l. Actuator agency Listings: UL 873, CUL: UL

 m. Basis of Design: Schneider Electric SmartX Mx51-7103, or approved equal

5. ½" to 2" Bronze, Linear Globe Valve Actuators/220 lbs. force

 a. Actuators must have Two- Position for a SPST controller, Floating for a SPST controller, and Proportional models will a controller input signal of either a 0…10 Vdc, 2…10 Vdc, 4…20 mAdc, or 6…9 Vdc. Control function direct/reverse action is jumper selectable

 b. Actuator is to be spring return.

 c. Actuator will have 220 lb. force (979 newton) with ½" (13 mm) or 1" (25 mm) nominal linear stroke

 d. Feedback on proportional model with 2…10 Vdc (max. 0.5 mA) output signal or to operate up to four like additional slave actuators.

 e. Actuator operating temperature is 0…140°F (-18…60°C) up to a maximum valve fluid temperature of 281°F (138°C), 0…120°F (-18…49°C) up to a maximum valve fluid temperature of 300°F (149°C), 0…100°F (-18…38°C) up to a maximum valve fluid temperature of 340°F (171°C), 0…90°F (-18…32°C) up to a maximum valve fluid temperature of 366°F (186°C).

 f. Actuator must automatically set input span to match valve travel.

 g. Actuator is to have a 24 Vac power supply on Two-position and Proportional models and 120 Vac on Two-position models.

 h. Actuator housings rated for up to NEMA 2/ IP54

 i. Actuator must have manual override to allow positioning of valve and preload.

 j. Actuator is to mount directly to valves without separate linkage.

 k. Actuator agency Listings: UL 873, CUL: UL

 l. Basis of Design: Schneider Electric SmartX Mx51-720x, or approved equal.

6. ½” to 2” Bronze, Linear Globe Valve Actuators with linkage SR

 a. Actuators with 35, 60, 133, or 150 lb.-in of force depending on model.

 b. Actuator housings rated for up to NEMA 2/ IP54 with a 150 lb.-in. rated a NEMA 4.
c. Actuators are to be spring return.
d. Actuators are to have Two-position, Floating and Proportional models.
e. Actuators must have overload protection throughout rotation.
f. Actuator have an optional built-in auxiliary switch to provide for interfacing or signaling on selected models.
g. Actuator agency listings: UL-873, C22-2 No.24-83, CUL0
h. Basis of Design: Schneider Electric SmartX, or approved equal.

7. ½” to 2” Bronze Body, Linear Globe Valve Actuators with linkage SR & NSR
 a. Actuators are to be either floating SPDT control or proportional control 0…10, 2…10 Vdc or 4…20 mA with a 500-ohm resistor included.
 b. Actuators are to be direct/reverse with selectable DIP switches.
 c. Actuators are to have 90 lb. (400N), 180 lb. (800N), or 337 lb. (1500N) of force on Non-Spring Return (NSR) 157 lb. of force on the Spring Return model. Note: Not every actuator is for every valve.
 d. Actuators are to be powered with 24 Vac or 24 Vdc.
 e. All Non-Spring Return (NSR) actuators are to be NEMA 2, vertical mount only. Spring Return (SR) actuators are to have NEMA 4 models.
 f. Actuators must have manual override to allow positioning of the valve.
 g. Actuators must have selectable valve sequencing and flow curves of either equal percentage or linear.
 h. Actuators must have feedback.
 i. Actuators must have internal torque protection throughout stroke.
 j. Actuator operating temperature is 14…122°F (-10…50°C) for chilled water applications, 14…113°F (-10…45°C) up to a maximum valve fluid temperature of 281°F (138°C), 14…107°F (-10…42°C) up to a maximum valve fluid temperature of 300°F (149°C), 14…100°F (-10…38°C) up to a maximum valve fluid temperature of 340°F (171°C), 14…90°F (-10…32°C) up to a maximum valve fluid temperature of 366°F (186°C).
 k. Actuator agency listings (North America) UL873, cULus, RCM, CE
 l. Basis of Design: Schneider Electric Forta M400A-VB, M800A-VB, M900A and M1500x-VB screw mounted on Venta VB7000s, or approved equal.

8. 2 ½” to 6” Cast Iron Flanged Globe Valve Linear Actuators with linkage
 a. Actuators are to be either floating SPDT control or proportional control 0…10, 2…10 Vdc or 4…20 mA with a 500-ohm resistor included.
 b. Actuators are to be direct/reverse acting with selectable DIP switch.
 c. Actuators are to have 180 lb. (800N) or 337 lb. (1500N) of force.
 d. Actuators will need a 24 Vac or Vdc power supply.
 e. Actuators are to be rated NEMA 2, vertical mount only.
 f. Actuators must have manual override to allow positioning of the valve.
 g. Actuators must have selectable valve sequencing and flow curves of either equal percentage to linear. A 2…10 Vac feedback.
 h. Actuators must have Internal torque protection throughout stroke.
 i. Actuator operating temperature is 14…122°F (-10…50°C) for chilled water applications, 14…113°F (-10…45°C) up to a maximum valve fluid temperature of 281°F (138°C), 14…107°F (-10…42°C) up to a maximum valve fluid temperature of 300°F (149°C).
 j. Actuator agency listings (North America) UL873, cULus, RCM, CE
 k. Basis of Design: Schneider Electric Forta M800A and M1500A, or approved equal.

9. 2-½” to 6” Cast Iron Flanged Globe Valve Actuators/220 lbs. force.
a. Actuators must have Two-Position for a SPST controller, Floating for a SPST controller, and Proportional models will a controller input signal of either a 0…10 Vdc, 2…10 Vdc, 4…20 mA, or 6…9 Vdc. Control function direct/reverse action is jumper selectable.

b. Actuator is to be spring return.

c. Actuator will have 220 lb. force (979 newton) with ½” (13 mm) or 1” (25 mm) nominal linear stroke.

d. Feedback on proportional model with 2…10 Vdc (max. 0.5 mA) output signal or to operate up to four like additional slave actuators.

e. Actuator must automatically set input span to match valve travel.

f. Actuator Operating temperature 0…140°F (-18…60°C) up to a maximum valve fluid temperature of 300°F (149°C).

g. Actuator is to have a 24 Vac power supply on Two-position and Proportional models and 120 Vac on Two-position models.

h. Actuator housings rated for up to NEMA 2/IP54.

i. Actuator must have manual override to allow positioning of valve and preload.

j. Actuator is to mount directly to valves without separate linkage.

k. Actuator agency Listings: UL 873, CUL: UL.

l. Basis of Design: Schneider Electric SmartX Mx61-720x, or approved equal.

10. 2-½” to 6” Cast Iron Flanged Globe Valve Actuators with linkage SR.

a. Actuators with 60, 133, or 150 lb.-in of force depending on model.

b. Actuator housings rated for up to NEMA 2/ IP54 with a 150 lb.-in. rated a NEMA 4.

c. Actuators are to be spring return.

d. Actuators are to have Two-position, Floating and Proportional models.

e. Actuators must have overload protection throughout rotation.

f. Actuator have an optional built-in auxiliary switch to provide for interfacing or signaling on selected models.

g. Actuator agency listings: UL-873, C22-2 No.24-83, CUL0.

h. Basis of Design: Schneider Electric SmartX, or approved equal.

11. 2” to 18” 2-Way and 2” to 16” 3-Way Linear Butterfly Valve Actuator with linkage NSR.

a. The butterfly valve actuators are to be Non-Spring Return (NSR) two-position and proportional taking 0…10 Vdc or 4…20 mA models. All Actuators are to be NEMA 4, manual override (hand wheel) two auxiliary switches, and built-in heater.

b. Actuator close-offs and CVs must be appropriate for the valve size in a typical HVAC application.

c. Actuators must be available in 24 Vac and 120 Vac models.

d. Actuators must have Internal wiring isolation for parallel wiring multiple units that eliminates the risk of feedback from one actuator to another.

e. Proportional models must have feedback of 0…10 Vdc or 4…20 mA.

f. Actuator operating temperature shall be -40…150°F (-40…60°C).

g. Actuator agency listings (North America) UL, CSA and CE.

h. Basis of Design: Schneider Electric S70, or approved equal.

12. 2” to 4” 2-Way and 3-Way Butterfly Valve Actuators SR
a. The butterfly valve actuators are to be Spring Return (SR) two-position and proportional taking 2…10 Vdc or 4…20 mA models. All Actuators are to be NEMA 2.

b. Actuator close-offs and CVs must be appropriate for the valve size in a typical HVAC application.

c. Actuators must be available in 24 Vac models.

d. Actuators shall have two SPDT auxiliary switch models.

e. Actuators must have [Internal wiring isolation for parallel wiring multiple units that eliminates the risk of feedback from one actuator to another.

f. Proportional models must have feedback of 2…10 Vdc or 4…20 mA.

g. Actuator operating temperature shall be -22…140°F (-12…60°C).

h. Actuator agency listings (North America) UL, CSA and CE

i. Basis of Design: Schneider Electric SmartX Mx-41-7153, or approved equal.

13. 2” to 6” 2-Way and 3-Way Butterfly Valve Actuators NSR

a. The butterfly valve actuators are to be Non-Spring Return (NSR) two-position and proportional taking 0…10 Vdc or 4…20 mA models. All Actuators are to be NEMA 2.

b. Actuator close-offs and CVs must be appropriate for the valve size in a typical HVAC application.

c. Actuators must be available in 24 Vac models.

d. Actuators shall have two SPDT auxiliary switch models.

e. Actuators must have [Internal wiring isolation for parallel wiring multiple units that eliminates the risk of feedback from one actuator to another.

f. Proportional models must have feedback of 2…10 Vdc or 4…20 mA.

g. Actuator operating temperature shall be -4…122°F (-2…50°C).

h. Actuator agency listings (North America) UL, CSA and CE

i. Basis of Design: Schneider Electric SmartX NR-22xx-5xx, or approved equal.

I. Damper Actuators

1. Direct-coupled type non-hydraulic designed for minimum 100,000 full-stroke cycles at rated torque.

2. Direct-coupled damper actuators must have a five-year warrantee.

3. Size for torque required for damper seal at maximum design conditions and valve close-off pressure for system design.

4. Direct-coupled damper actuators should accommodate 3/8", ½" 1.05" round or 3/8”…¼” and ¼” square damper shafts.

5. Actuator operating temperature minimum requirements: 44, 88 and 133 lb.-in. are –25°F…130°F (–32°C…55°C). The 30, 35, 60, 150 and 300 lb.-in. are -25°…140°F (-30°C…60 °C). The 270 are -22°…122°F (-30°C… 50 °C).

6. Overload protected electronically throughout rotation except for selected Floating actuators the have a mechanical clutch.

7. Spring Return Actuators: Mechanical fail safe shall incorporate a spring-return mechanism.

8. Non-Spring Return Actuators shall stay in the position last commended by the controller with an external manual gear release to allow positioning when not powered.

9. Power Requirements: 24Vac/dc [120Vac][230Vac]

10. Proportional Actuators controller input range from 0…10 Vdc, 2…10 Vdc or 4…20 mA models.

11. Housing: Minimum requirement NEMA type 2 with NEMA type 4 available for applications requiring higher ratings.
12. Actuators with a microprocessor should not be able to be modified by an outside source (cracked or hacked).
13. Actuators of 133 and 270 lb.-in. of torque or more should be able to be tandem mount or “gang” mount.
14. Agency Listings: ISO 9001, cULus, CE and CSA
15. Basis of Design: Schneider Electric SmartX Actuators, or approved equal.

J. Smoke Detectors
 1. Air duct smoke detectors shall be by Air Products & Controls or approved equal. The detectors shall operate at air velocities from 300 feet per minute to 4000 feet per minute.
 2. The smoke detector shall utilize a photoelectric detector head.
 3. The housing shall permit mechanical installation without removal of the detector cover.
 4. The detectors shall be listed by Underwriters Laboratories and meet the requirements of UL 268A.

PART 3 - EXECUTION

3.1 GENERAL

A. In addition to the requirements specified herein, execution shall be in accordance with the requirements of Specification Section 23 00 00 and Drawings.

B. Examine equipment exterior and interior prior to installation. Report any damage and do not install any equipment that is structurally, moisture, or mildew damaged.

C. Verification of Conditions: Examine areas and conditions under which the work is to be installed, and notify the Contractor in writing, with a copy to the Owner and the Engineer, of any conditions detrimental to the proper and timely completion of the work. Do not proceed with the work until unsatisfactory conditions have been corrected.

D. Beginning of the work shall indicate acceptance of the areas and conditions as satisfactory by the Installer.

E. Install equipment in accordance with reviewed product data, final shop drawings, manufacturer’s written instructions and recommendations, and as indicated on the Drawings.

F. Provide final protection and maintain conditions in a manner acceptable to the manufacturer that shall help ensure that the equipment is without damage at time of Substantial Completion.

G. Demolition
 1. Remove controls which do not remain as part of the building automation system, all associated abandoned wiring and conduit, and all associated pneumatic tubing. The Owner will inform the Contractor of any equipment which is to be removed that will remain the property of the Owner. All other equipment which is removed will be disposed of by the Contractor.

H. Access to Site
 1. Unless notified otherwise, entrance to building is restricted. No one will be permitted to enter the building unless their names have been cleared with the Owner or the Owner’s Representative.

I. Code Compliance
1. All wiring shall be installed in accordance with all applicable electrical codes and will comply with equipment manufacturer's recommendations. Should any discrepancy be found between wiring specifications in Division 17 and Division 16, wiring requirements of Division 17 will prevail for work specified in Division 17.

J. Cleanup
1. At the completion of the work, all equipment pertinent to this contract shall be checked and thoroughly cleaned, and all other areas shall be cleaned around equipment provided under this contract.

3.2 SYSTEM ACCEPTANCE TESTING

A. All application software will be verified and compared against the sequences of operation.

B. Control loops will be exercised by inducing a setpoint shift of at least 10% and observing whether the system successfully returns the process variable to setpoint. Record all test results and attach to the Test Results Sheet.

C. Test each alarm in the system and validate that the system generates the appropriate alarm message, that the message appears at all prescribed destinations (workstations or printers), and that any other related actions occur as defined (i.e. graphic panels are invoked, reports are generated, etc.). Submit a Test Results Sheet to the owner.

D. Perform an operational test of each unique graphic display and report to verify that the item exists, that the appearance and content are correct, and that any special features work as intended. Submit a Test Results Sheet to the owner.

E. Perform an operational test of each third party interface that has been included as part of the automation system. Verify that all points are properly polled, that alarms have been configured, and that any associated graphics and reports have been completed. If the interface involves a file transfer over Ethernet, test any logic that controls the transmission of the file, and verify the content of the specified information.

3.3 INSTALLATION

A. Hardware Installation Practices for Wiring
1. All controllers are to be mounted vertically and per the manufacturer's installation documentation.
2. The 120VAC power wiring to each Ethernet or Remote Site controller shall be a dedicated run, with a separate breaker. Each run will include a separate hot, neutral and ground wire. The ground wire will terminate at the breaker panel ground. This circuit will not feed any other circuit or device.
3. A true earth ground must be available in the building. Do not use a corroded or galvanized pipe, or structural steel.
4. Wires are to be attached to the building proper at regular intervals such that wiring does not droop. Wires are not to be affixed to or supported by pipes, conduit, etc.
5. Conduit in finished areas will be concealed in ceiling cavity spaces, plenums, furred spaces and wall construction. Exception: metallic surface raceway may be used in finished areas on masonry walls. All surface raceway in finished areas must be color matched to the existing finish within the limitations of standard manufactured colors.
6. Conduit, in non-finished areas where possible, will be concealed in ceiling cavity spaces, plenums, furred spaces, and wall construction. Exposed conduit will run parallel to or at right angles to the building structure.
7. Wires are to be kept a minimum of three (3) inches from hot water, steam, or condensate piping.
8. Where sensor wires leave the conduit system, they are to be protected by a plastic insert.
9. Wire will not be allowed to run across telephone equipment areas.
10. Provide fire caulking at all rated penetrations.

B. Installation Practices for Field Devices
1. Well-mounted sensors will include thermal conducting compound within the well to insure good heat transfer to the sensor.
2. Actuators will be firmly mounted to give positive movement and linkage will be adjusted to give smooth continuous movement throughout 100 percent of the stroke.
3. Relay outputs will include transient suppression across all coils. Suppression devices shall limit transients to 150% of the rated coil voltage.
4. Water line mounted sensors shall be removable without shutting down the system in which they are installed.
5. For duct static pressure sensors, the high pressure port shall be connected to a metal static pressure probe inserted into the duct pointing upstream. The low pressure port shall be left open to the plenum area at the point that the high pressure port is tapped into the ductwork.
6. For building static pressure sensors, the high pressure port shall be inserted into the space via a metal tube. Pipe the low pressure port to the outside of the building.

C. Wiring, Conduit, and Cable
1. All wire will be copper and meet the minimum wire size and insulation class listed below:
 a. Power - 12 Gauge - 600 Volt
 b. Class One - 14 Gauge Std. - 600 Volt
 c. Class Two - 18 Gauge Std. - 300 Volt
 d. Class Three - 18 Gauge Std. - 300 Volt
 e. Communications - Per Mfr.
2. Power and Class One wiring may be run in the same conduit. Class Two and Three wiring and communications wiring may be run in the same conduit.
3. Where different wiring classes terminate within the same enclosure, maintain clearances and install barriers per the National Electric Code.
4. Where wiring is required to be installed in conduit, EMT shall be used. Conduit shall be minimum 1/2 inch galvanized EMT. Set screw fittings are acceptable for dry interior locations. Watertight compression fittings shall be used for exterior locations and interior locations subject to moisture. Provide conduit seal-off fitting where exterior conduits enter the building or between areas of high temperature/moisture differential.
5. Flexible metallic conduit (max. 3 feet) shall be used for connections to motors, actuators, controllers, and sensors mounted on vibration producing equipment. Liquid-tight flexible conduit shall be use in exterior locations and interior locations subject to moisture.
6. Junction boxes shall be provided at all cable splices, equipment termination, and transitions from EMT to flexible conduit. Interior dry location J-boxes shall be galvanized pressed steel, nominal four-inch square with blank cover. Exterior and damp location JH-boxes shall be cast alloy FS boxes with threaded hubs and gasketed covers.
7. Where the space above the ceiling is a supply or return air plenum, the wiring shall be plenum rated. Teflon wiring can be run without conduit above suspended ceilings. EXCEPTION: Any wire run in suspended ceilings that is used to control outside air dampers or to connect the system to the fire management system shall be in conduit.
8. Fiber optic cable shall include the following sizes; 50/125, 62.5/125 or 100/140.
9. Only glass fiber is acceptable, no plastic.
10. Fiber optic cable shall only be installed and terminated by an experienced contractor. The BAS system supplier shall submit to the Engineer the name of the intended contractor of the fiber optic cable with his submittal documents.

D. Enclosures
1. For all I/O requiring field interface devices, these devices where practical will be mounted in a field interface panel (FIP). The Contractor shall provide an enclosure which protects the device(s) from dust, moisture, conceals integral wiring and moving parts.
2. FIPs shall contain power supplies for sensors, interface relays and contactors, and safety circuits.
3. The FIP enclosure shall be of steel construction with baked enamel finish; NEMA 1 rated with a hinged door and keyed lock. The enclosure will be sized for twenty percent spare mounting space. All locks will be keyed identically.
4. All wiring to and from the FIP will be to screw type terminals. Analog or communications wiring may use the FIP as a raceway without terminating. The use of wire nuts within the FIP is prohibited.
5. All outside mounted enclosures shall meet the NEMA-4 rating.
6. The wiring within all enclosures shall be run in plastic track. Wiring within controllers shall be wrapped and secured.

E. Identification
1. Identify all control wires with labeling tape or sleeves using words, letters, or numbers that can be exactly cross-referenced with as-built drawings.
2. All field enclosures, other than controllers, shall be identified with a Bakelite nameplate. The lettering shall be in white against a black or blue background.
3. Junction box covers will be marked to indicate that they are a part of the BAS system.
4. All I/O field devices (except space sensors) that are not mounted within FIP’s shall be identified with name plates.
5. All I/O field devices inside FIP's shall be labeled.

F. Existing Controls.
1. Existing controls which are to be reused must each be tested and calibrated for proper operation. Existing controls which are to be reused and are found to be defective requiring replacement, will be noted to the Owner. The Owner will be responsible for all material and labor costs associated with their repair.

G. Location
1. The location of sensors is per mechanical and architectural drawings.
2. Space humidity or temperature sensors will be mounted away from machinery generating heat, direct light and diffuser air streams.
3. Outdoor air sensors will be mounted on the north building face directly in the outside air. Install these sensors such that the effects of heat radiated from the building or sunlight is minimized.
4. Field enclosures shall be located immediately adjacent to the controller panel(s) to which it is being interfaced.

H. Software Installation
1. The Contractor shall provide all labor necessary to install, initialize, start-up and debug all system software as described in this section. This includes any operating system software or other third party software necessary for successful operation of the system.
3.4 TRAINING

A. The BAS system supplier shall provide both on-site and classroom training to the Owner’s representative and maintenance personnel per the following description:

B. On-site training shall consist of a minimum of (4) hours of hands-on instruction geared at the operation and maintenance of the systems. The curriculum shall include:
 1. System Overview
 2. System Software and Operation
 3. System access
 4. Software features overview
 5. Changing setpoints and other attributes
 6. Scheduling
 7. Editing programmed variables
 8. Displaying color graphics
 9. Running reports
 10. Workstation maintenance
 11. Viewing application programming
 12. Operational sequences including start-up, shutdown, adjusting and balancing.
 13. Equipment maintenance

C. C.Factory, classroom training will include a minimum of (2) training reservations for a 3 day course with material covering workstation operation tuition free with travel expense responsibility of the owner. The option for 2-3 weeks of system engineering and controller programming shall be possible if necessary and desired.

3.5 CONTROL SYSTEM SWITCH-OVER

A. Demolition of the existing control system will occur after the new temperature control system is in place including new sensors and new field interface devices.

B. Switch-over from the existing control system to the new system will be fully coordinated with the Owner. A representative of the Owner will be on site during switch-over.

C. The Contractor shall minimize control system downtime during switch-over. Sufficient installation mechanics will be on site so that the entire switch-over can be accomplished in a reasonable time frame.

3.6 DATABASE CONFIGURATION.

A. The Contractor will provide all labor to configure those portions of the database that are required by the points list and sequence of operation.

3.7 COLOR GRAPHIC DISPLAYS.

A. Unless otherwise directed by the owner, the Contractor will provide color graphic displays as depicted in the mechanical drawings for each system and floor plan. For each system or floor plan, the display shall contain the associated points identified in the point list and allow for setpoint changes as required by the owner.
3.8 REPORTS.

A. The Contractor will configure a minimum of 4 reports for the owner. These reports shall, at a minimum, be able to provide:
 1. Trend comparison data
 2. Alarm status and prevalence information
 3. Energy Consumption data
 4. System user data

3.9 POINT TO POINT CHECKOUT.

A. Each I/O device (both field mounted as well as those located in FIPs) shall be inspected and verified for proper installation and functionality. A checkout sheet itemizing each device shall be filled out, dated and approved by the Project Manager for submission to the owner or owner’s representative.

B. In case of wireless devices, the signal strength recorded during checkout shall be reported.

3.10 CONTROLLER AND WORKSTATION CHECKOUT.

A. A field checkout of all controllers and front end equipment (computers, printers, modems, etc.) shall be conducted to verify proper operation of both hardware and software. A checkout sheet itemizing each device and a description of the associated tests shall be prepared and submitted to the owner or owner’s representative by the completion of the project.

3.11 DOCUMENTATION

A. As built software documentation will include the following:
 1. Descriptive point lists
 2. Application program listing
 3. Application programs with comments.
 4. Printouts of all reports.
 5. Alarm list.
 6. Printouts of all graphics
 7. Commissioning and System Startup
 8. An electronic copy of all databases, configuration files, or any type of files created specifically for each system.

END OF SECTION 23 0900
SECTION 230993 - SEQUENCE OF OPERATIONS FOR HVAC DDC

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes control sequences for DDC for HVAC systems, subsystems, and equipment.

B. Display all control points and values defined herein, as well as all points on the control drawings, on the graphics control screen(s).

1.2 CENTRAL PLANT OCCUPANCY MODE

A. The central plant shall be in the occupied mode as per the school district calendar schedule.

B. When in the occupied mode, the plant shall be enabled and equipment shall be allowed to operate as noted below.

C. When in the unoccupied mode the plant shall be disabled and equipment shall be turned off unless there is a call from the building to maintain unoccupied heating or cooling setpoints.

D. The central plant occupancy mode shall be displayed on the graphic control screen.

E. There shall be an over-ride on the graphic control screen to manually place the system in either the “occupied” or unoccupied” mode.

1.3 CENTRAL PLANT OPERATING MODE

A. The outside air temperature shall be displayed on the graphic screen.

B. If the outside air temperature is below 60 degrees F (adj) for 90 minutes (adj), then the central plant shall be placed in the “heating” mode.

C. If the outside air temperature is above 65 degrees F (adj) for 90 minutes (adj), then the central plant shall be placed in the “cooling” mode.

D. If the outside air temperature is in-between 60 degrees F and 65 degrees F then the system shall be placed in the “dead band” mode.

E. The plant mode of operation shall be displayed on the graphic screen.

F. If a building system calls for and operating mode contrary to the central plant current operating mode, then the BACS shall log the call. When the majority of the building systems call for an operating mode contrary to the current setting of the central plant, the plant shall change over to the requested mode for 60 minutes and then re-poll the building systems.

G. There shall be an over-ride on the graphic control screen to manually place the system in either the “heating”, “cooling”, or “dead-band” mode.

1.4 CENTRAL PLANT HYDRONIC DISTRIBUTION LOOP CONTROL SEQUENCES

A. There are three hydronic pipe distribution loops for the building, each with a primary pump and a backup pump. All are operated by Variable Frequency Drives,
B. Each hydronic pipe distribution loop shall circulate heating water in the winter and chilled water in the summer as follows:
 1. If the central plant is in the “heating” mode then close the chilled water system isolation valve and open the heating water isolation valve and enable the primary pump on each of the three hydronic distribution loops.
 2. If the central plant is in the “cooling” mode then close the heating water isolation valve and open the chilled water isolation valve enable the primary pump on each of the three hydronic distribution loops.
 3. If the central plant is in the “dead-band” mode then turn off the distribution loop pumps.
 4. Alternate between the primary pump and back-up pump on each of the three distribution loops once every 30 days.
 5. The pumps on each loop shall have current sensors to prove pump status and shall operate in a lead/lag manner as follows;
 a. If the lead pump fails to start when commanded an alarm shall be generated and the lag pump shall start.
 b. If the lag pump fails to start when enabled then an alarm shall be generated.
 6. A pipe differential pressure sensor shall be located 2/3 the distance down each distribution loop.
 7. The VFD shall control pump speed to maintain a pressure differential of 15 ft (adj.) but shall always operate above minimum pump speed/flow as listed on the equipment schedule and at or below design speed/flow based on the heating and cooling design flow rates.

1.5 CENTRAL PLANT HEATING WATER SUPPLY TEMPERATURE CONTROL:

A. BACS controls:
 1. Whenever the system is in the “heating” mode then the master boiler controller shall be enabled and the chiller shall be disabled.
 2. The heating water supply temperature reset schedule shall be calculated by the BACS in a linear relationship starting at 180 degrees F when the outside air temperature is 10 degrees F or below and 100 degrees F when the outside air temperature is 60 degrees F or above. This setpoint shall be sent to the master boiler control panel.
 3. Heating water supply and return temperature sensors shall be located in four locations; one at the inlet and outlet of boilers, and one at each of the three distribution loops. These values shall be displayed on the graphic interface but are for monitoring only. However, if the supply water is more than 15 degrees below setpoint at any of the four locations for more than 60 minutes then an alarm shall be generated.
 4. The BACS shall receive and alarm from the boiler controls if either boiler malfunctions and shall display the alarm on the graphics interface and notify the school district.
 5. The BACS shall connect to the master boiler control panel BACnet interface and display all data points listed in these control sequences and on the plans. Additionally, the control contractor import the following points into the BACS and display as monitoring points on the BACS:
 a. Boiler #1 status.
 b. Boiler #2 status.
 c. Boiler #1 isolation valve position.
 d. Boiler #2 isolation valve position.
 e. Boiler #1 supply water temperature.
 f. Boiler #2 supply water temperature.
 g. Boiler #1 firing rate.
 h. Boiler #2 firing rate.
 i. Finally, the controls contractor shall coordinate with the school district personnel during training by showing them a list of available control points from the boiler
controller and then add up to 6 more values on the graphic(s) screen as selected by the school district.

B. Boiler Controls:
1. The two condensing boilers are piped in parallel and shall be configured and controlled in a master and slave relationship by the boiler factory packaged controls.
2. After receiving the heating water control setpoint from the BACS, the lead boiler shall open its isolation valve and modulate to 40% capacity. Then the lag boiler shall open its isolation valve and both boilers shall modulate from 20% to 100% capacity until set point is maintained. The boiler controller shall have its own independent supply water pipe temperature sensor.
3. The master, or lead boiler, shall rotate each week.
4. An alarm from the boiler control panel shall be sent to the BACS if either boiler malfunctions.
5. The boiler BACnet interface shall be connected to the BACS as described above.

C. Boiler Emergency Shutdown:
1. The boilers shall be de-activated on an emergency basis with by either of the two boiler emergency shut down (kill) switches, one at each entry to the boiler room.

1.6 CENTRAL PLANT CHILLED-WATER SYSTEM CONTROL

A. BACS controls:
1. Whenever the system is in the “cooling” mode then the boilers shall be disabled.
2. The two constant speed chiller loop primary pump shall start.
3. If either pump fails to start when commanded, an alarm shall be generated.
4. Once proof of flow for both pumps in the chiller primary loop has been established then enable the air-cooled chiller.
5. Chilled-Water Supply Temperature:
 a. Chilled water supply and return water temperature sensors shall be located in the mechanical room and their values shall display on the graphics screen.
 b. The BACS shall calculate a reset chilled-water supply temperature in straight-line relationship with outdoor-air temperature for the following conditions:
 1) 44 degrees F when outdoor-air temperature is 80 deg F.
 2) 54 degrees F when outdoor-air temperature is 60 deg F.
 c. If the chilled water supply temperature is more than 5 degrees above setpoint for more than 60 minutes then an alarm shall be generated.

B. Chiller Packaged Controls:
1. Once enabled by the BACS system, the existing air-cooled chiller shall operate to maintain the chilled water supply water temperature setpoint as received from the BACS system.
2. If the chiller is in alarm, then it shall send signal to the BACS which shall generate an alarm status on the graphics control screen and alert the school district.

1.7 DOMESTIC HOT WATER SYSTEM CONTROL

A. The existing gas fired domestic water heater, storage tank, tank circulating pump and two building recirculating pumps shall be incorporated into the BACS control system as follows:

B. The system shall be in the occupied mode as per the school district calendar schedule.

C. In the occupied mode the storage tank circulation pump and the two building recirculation pumps shall be enabled. In the unoccupied mode the three pumps shall be disabled.
D. The pumps shall have current sensors to prove pump status. If any of the three pumps fail to start then an alarm shall be generated.

E. When enabled, the storage tank pump shall operate on its current controls to maintain tank temperature. A second, new, tank temperature sensor shall be added and be monitored by the BACS to maintain 120 degrees F.

F. A domestic water temperature sensor shall be added to each of the two recirculation loops and shall be used to start/stop their respective pump when the fluid temperature is below 105 degrees F (adj.).

G. If the tank temperature or the recirculation pipe loop temperatures are more than 10 degrees below setpoint in the occupied mode for more than 90 minutes then an alarm shall be generated.

1.8 GYMNASIUM AIR-HANDLING-UNIT CONTROL SEQUENCES

A. The air handling unit controls shall be bid as alternate #1 and #2 as per the drawings.

B. The air handling units are existing. Their pneumatic controls shall be removed and converted to DDC controls as per the control drawings and plans.

C. Occupancy Schedule:
 1. The air handling unit shall be in the occupied mode as per the school district calendar schedule.
 2. Building warm up shall start the supply fan to run continuously before occupied mode with a time duration as calculated by the BACS system to achieve space temperature setpoint once occupied mode begins.
 3. When in the occupied mode, the supply fan shall run continuously.
 4. When in the unoccupied mode the supply fan shall cycle to maintain unoccupied space temperature setpoints.
 5. The occupancy mode shall be displayed on the graphic control screen.
 6. There shall be an over-ride on the graphic control screen to manually place the system in either the “occupied” or unoccupied” mode.

D. Safeties:
 1. Allow supply fan to start if:
 a. Space temperature is above 37 deg F and below 120 deg F.
 b. Duct temperature is above 33 degrees F.
 c. The return air smoke detector is not in alarm mode.
 2. Signal alarm if fan fails to start as commanded.

E. Damper Control:
 1. Warm Up Mode:
 a. Close outside air damper and relief air damper and fully open return air damper.
 2. Occupied Mode:
 a. Minimum Outside Air Position:
 1) Open outdoor-air damper to minimum position to achieve minimum outside airflow as coordinated with the test and balance contractor. Inversely close the return damper.
 b. Economizer:
 1) When the space is in the cooling mode, and when the outside air temperature is at or below the return air temperature, modulate outdoor and return air dampers to maintain 52 degrees F mixed air temperature.
 c. Relief:
1) In the occupied mode, the building differential pressure sensor shall modulate the relief air damper to maintain 0.05 inches positive pressure (adj.).

3. Unoccupied Mode:
 a. Close outside air damper and relief damper and fully open the return air damper.

4. Do not enable mixed-air control during morning warm-up period.

 F. Filters: Signal alarm on high-pressure differential conditions.

 G. Two pipe Switch-over Hydronic Coil: The air handling unit has one coil that is used for both heating and cooling.
 1. Heating: If the space is below heating setpoint, and the central plant is in the “heating” mode then modulate the coil control valve to maintain space temperature set points as follows:
 a. Occupied Heating Temperature: 70 deg F.
 b. Unoccupied Heating Temperature: 65 deg F.

 2. Cooling: If the space is above the cooling setpoint, and the central plant is in the “cooling” mode then modulate the coil control valve to maintain space temperature set points as follows:
 a. Occupied Cooling Temperature: 75 deg F.
 b. Unoccupied Cooling Temperature: 85 deg F.

 3. If the space has a call for hydronic “heating” and the central plant is in “dead-band” or “cooling” mode then send a signal to the BACS.

 4. If the space has a call for hydronic “cooling” and the central plant is in “dead-band” or “heating” mode then send a signal to the BACS.

 H. Coordination of Air-Handling Unit Sequences: Ensure that preheat, mixed-air, heating-coil, and cooling-coil controls have common inputs and do not overlap in function.

PART 2 - (Not Applicable)

PART 3 - (Not Applicable)

END OF SECTION 230993
SECTION 231123 - FACILITY NATURAL-GAS PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Pipes, tubes, and fittings.
 2. Piping specialties.
 5. Pressure regulators.
 6. Dielectric fittings.

1.2 ACTION SUBMITTALS

A. Product Data:
 1. Piping specialties.
 2. Corrugated, stainless steel tubing with associated components.
 3. Valves. Include pressure rating, capacity, settings, and electrical connection data of selected models.
 4. Pressure regulators. Indicate pressure ratings and capacities.
 5. Service meters. Indicate pressure ratings and capacities. Include bypass fittings and meter bars.
 6. Dielectric fittings.

1.3 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plans and details, drawn to scale, on which natural-gas piping is shown and coordinated with other installations, using input from installers of the items involved.

B. Certificates:
 1. Welding certificates.

C. Site Survey: Plans, drawn to scale, on which natural-gas piping is shown and coordinated with other services and utilities.

D. Field Quality-Control Submittals:
 1. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.5 QUALITY ASSURANCE

A. Certifications:
 1. Steel Support Welding: Certify procedures and personnel in accordance with AWS D1.1/D1.1M, "Structural Welding Code - Steel."
 2. Pipe Welding: Certify procedures and operators in accordance with the ASME Boiler and Pressure Vessel Code.
1.6 PROJECT CONDITIONS

A. Perform site survey, research public utility records, and verify existing utility locations. Contact utility-locating service for area where Project is located.

B. Interruption of Existing Natural-Gas Service: Do not interrupt natural-gas service to facilities occupied by Owner or others unless permitted under the following conditions, and then only after arranging to provide purging and startup of natural-gas supply in accordance with requirements indicated:
 1. Notify Architect no fewer than two days in advance of proposed interruption of natural-gas service.
 2. Do not proceed with interruption of natural-gas service without Architect's written permission.

1.7 COORDINATION

A. Coordinate requirements for access panels and doors for valves installed and concealed behind finished surfaces. Comply with requirements in Section 083113 "Access Doors and Frames."

B. Coordinate requirements for piping identification for natural-gas piping. Comply with requirements in Section 220553 "Identification of Plumbing Piping and Equipment."

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Comply with the International Fuel Gas Code.

B. Natural-Gas System Pressure within Buildings:
 1. Two pressure ranges. Primary pressure is more than 0.5 psig, but not more than 2 psig, and is reduced to secondary pressure of 0.5 psig or less.
 2. Three pressure ranges. Primary pressure is more than 2 psig, but not more than 5 psig and is reduced to secondary pressures of more than 0.5 psig, but not more than 2 psig (13.8 kPa), and is reduced again to pressures of 0.5 psig or less.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a certified testing agency, and marked for intended location and application.

D. Seismic Performance: Natural-gas piping system is to withstand the effects of earthquake motions determined in accordance with ASCE/SEI 7. See Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."
 1. The term "withstand" means "the piping system will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
 2. Component Importance Factor: 1.0.

2.2 PIPES, TUBES, AND FITTINGS

A. Steel Pipe: ASTM A53/A53M, black steel, Schedule 40, Type E or S, Grade B.
 4. Protective Coating for Underground Piping: Factory-applied, three-layer coating of epoxy, adhesive, and PE.
2.3 JOINING MATERIALS

A. Joint Compound and Tape: Suitable for natural gas.

C. Brazing Filler Metals: Alloy with melting point greater than 1000 deg F complying with AWS A5.8/A5.8M. Brazing alloys containing more than 0.05 percent phosphorus are prohibited.

2.4 MANUAL GAS SHUTOFF VALVES

A. General Requirements for Metallic Valves, NPS 2 and Smaller: Comply with ASME B16.33.
 1. CWP Rating: 125 psig.
 3. Dryseal Threads on Flare Ends: Comply with ASME B1.20.3.
 5. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for valves 1 inch and smaller.
 6. Service Mark: Valves NPS 1-1/4 to NPS 2 having initials "WOG" permanently marked on valve body.

B. General Requirements for Metallic Valves, NPS 2-1/2 and Larger: Comply with ASME B16.38.
 1. CWP Rating: 125 psig.
 2. Flanged Ends: Comply with ASME B16.5 for steel flanges.
 4. Service Mark: Initials "WOG" permanently marked on valve body.

C. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim: MSS SP-110.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. A.Y. McDonald Mfg. Co.
 b. Apollo Valves; a part of Aalberts Integrated Piping Systems.
 c. BrassCraft Manufacturing Co.; a Masco company.
 d. Lyall, R. W. & Company, Inc.
 e. Perfection Corporation.
 3. Ball: Chrome-plated bronze.
 4. Stem: Bronze; blowout proof.
 5. Seats: Reinforced TFE; blowout proof.
 6. Packing: Threaded-body packnut design with adjustable-stem packing.
 8. CWP Rating: 600 psig.
 9. Listing: Valves NPS 1 and smaller are to be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
2.5 PRESSURE REGULATORS

A. General Requirements:
 1. Single stage and suitable for natural gas.
 2. Steel jacket and corrosion-resistant components.
 3. Elevation compensator.
 4. End Connections: Threaded for regulators NPS 2 and smaller; flanged for regulators NPS 2-1/2 and larger.
 5. Integral or separate “Y” strainer.

B. Line Pressure Regulators: Comply with ANSI Z21.80A.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Actaris.
 b. American Meter Company.
 c. Dormont; a WATTS brand.
 d. Fisher Control Valves & Instruments; a brand of Emerson Process Management.
 e. Invensys.
 f. Maxitrol Company.
 g. Pietro Fiorentini.
 h. Richards Industries.
 2. Body and Diaphragm Case: Cast iron or die-cast aluminum.
 5. Seat Disc: NBR; resistant to gas impurities, abrasion, and deformation at the valve port.
 6. Orifice: Aluminum; interchangeable.
 7. Seal Plug: UV-stabilized, mineral-filled nylon.
 8. Single-port, self-contained regulator with orifice no larger than required at maximum pressure inlet, and no pressure sensing piping external to regulator.
 9. Pressure regulator is to maintain discharge pressure setting downstream and is to not exceed 150 percent of design discharge pressure at shutoff.
 11. Atmospheric Vent: Factory- or field-installed, stainless steel screen in opening if not connected to vent piping.

C. Appliance Pressure Regulators: Comply with ANSI Z21.18.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Canadian Meter Company Inc.
 b. Dormont; a WATTS brand.
 c. Eaton.
 d. Pietro Fiorentini.
 5. Seat Disc: NBR.
 8. Regulator may include vent limiting device, instead of vent connection, if approved by authorities having jurisdiction.
2.6 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Unions:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. A.Y. McDonald Mfg. Co.
 b. Capitol Manufacturing Company.
 c. Central Plastics Company
 d. HART Industrial Unions, LLC.
 e. Jomar Valve
 f. Matco-Norca.
 g. WATTS.
 h. Wilkins.
 i. Zurn Industries, LLC.
 2. Description:
 b. Pressure Rating: 125 psig minimum at 180 deg F.
 c. End Connections: Solder-joint copper alloy and threaded ferrous.

PART 3 - EXECUTION

3.1 PREPARATION

A. Close equipment shutoff valves before turning off natural gas to premises or piping section.

B. Inspect natural-gas piping in accordance with the International Fuel Gas Code to determine that natural-gas utilization devices are turned off in piping section affected.

C. Comply with the International Fuel Gas Code requirements for preventing accidental ignition.

3.2 INSTALLATION OF INDOOR PIPING

A. Comply with the International Fuel Gas Code for installation and purging of natural-gas piping.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

C. Arrange for pipe spaces, chases, slots, sleeves, and openings in building structure during progress of construction, to allow for mechanical installations.

D. Do not install piping in concealed locations unless sleeved with the sleeve open at both ends.

E. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

F. Where installing piping above accessible ceilings, allow sufficient space for ceiling panel removal.
G. Locate valves for easy access. Do not locate valves within return air plenums.

H. Install natural-gas piping at uniform grade of 2 percent down toward drip and sediment traps.

I. Install piping free of sags and bends.

J. Install fittings for changes in direction and branch connections.

K. Verify final equipment locations for roughing-in.

L. Comply with requirements in Sections specifying gas-fired appliances and equipment for roughing-in requirements.

M. Drips and Sediment Traps: Install drips at each appliance and at points where condensate may collect, including service-meter outlets. Locate where accessible to permit cleaning and emptying. Do not install where condensate is subject to freezing.
 1. Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped. Use nipple a minimum length of 3 pipe diameters, but not less than 3 inches long and same size as connected pipe. Install with space below bottom of drip to remove plug or cap.

N. Extend relief vent connections for service regulators, line regulators, and overpressure protection devices to outdoors and terminate with weatherproof vent cap.

O. Conceal pipe installations in walls, pipe spaces, utility spaces, above ceilings, below grade or floors, and in floor channels unless indicated to be exposed to view as required by AHJ.

P. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.

Q. Connect branch piping from top or side of horizontal piping.

R. Install unions in pipes NPS 2 and smaller, adjacent to each valve, at final connection to each piece of equipment. Unions are not required at flanged connections.

S. Do not use natural-gas piping as grounding electrode.

T. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230517 “Sleeves and Sleeve Seals for HVAC Piping.”

3.3 INSTALLATION OF VALVES

A. Install manual gas shutoff valve for each gas appliance ahead of corrugated stainless steel tubing, aluminum, or copper connector.

B. Install regulators and overpressure protection devices with maintenance access space adequate for servicing and testing.

C. Install earthquake valves aboveground outside buildings according to listing.

D. Install anode for metallic valves in underground PE piping.

E. Do not install valves in return-air plenums.
3.4 PIPING JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Threaded Joints:
 1. Thread pipe with tapered pipe threads complying with ASME B1.20.1.
 2. Cut threads full and clean using sharp dies.
 3. Ream threaded pipe ends to remove burrs and restore full inside diameter of pipe.
 4. Apply appropriate tape or thread compound to external pipe threads unless dryseal threading is specified.
 5. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

D. Welded Joints:
 2. Bevel plain ends of steel pipe.
 3. Patch factory-applied protective coating as recommended by manufacturer at field welds and where damage to coating occurs during construction.

3.5 INSTALLATION OF HANGERS AND SUPPORTS

A. Comply with requirements for seismic-restraint devices specified in Section 230548 "Vibration and Seismic Controls for HVAC."

B. Comply with requirements in Section 230529 "Hangers and Supports for HVAC Piping and Equipment" for hangers, supports, and anchor devices.

C. Install hangers for steel piping, with maximum horizontal spacing and minimum rod diameters, to comply with MSS SP-58, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.

D. Install hangers for corrugated stainless steel tubing, with maximum horizontal spacing and minimum rod diameters, to comply with manufacturer's written instructions, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.

E. Support horizontal piping within 12 inches of each fitting.

F. Support vertical runs of steel piping to comply with MSS SP-58, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.

G. Support vertical runs of corrugated stainless steel tubing to comply with manufacturer's written instructions, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.

3.6 PIPING CONNECTIONS

A. Connect to utility's gas main according to utility's procedures and requirements.

B. Install natural-gas piping electrically continuous, and bonded to gas-appliance equipment grounding conductor of the circuit powering the appliance in accordance with NFPA 70.
C. Where installing piping adjacent to appliances, allow space for service and maintenance of appliances.

D. Connect piping to appliances using manual gas shutoff valves and unions. Install valve within 72 inches of each gas-fired appliance and equipment. Install union between valve and appliances or equipment.

3.7 LABELING AND IDENTIFICATION

A. Comply with requirements in Section 230553 "Identification for HVAC Piping and Equipment" for piping and valve identification.

3.8 FIELD QUALITY CONTROL

A. Tests and Inspections:
 1. Test, inspect, and purge natural gas in accordance with the International Fuel Gas Code and authorities having jurisdiction.
 2. Natural-gas piping will be considered defective if it does not pass tests and inspections.

B. Prepare test and inspection reports.

3.9 DEMONSTRATION

A. Train Owner’s maintenance personnel to adjust, operate, and maintain earthquake valves.

3.10 INDOOR PIPING SCHEDULE FOR SYSTEM PRESSURES LESS THAN 0.5 PSIG

A. Aboveground, branch piping NPS 1 and smaller is to be one of the following:
 1. Corrugated stainless steel tubing with mechanical fittings having socket or threaded ends to match adjacent piping.
 2. Steel pipe with malleable-iron fittings and threaded joints.

B. Aboveground, distribution piping NPS 2.5 inches and larger shall be one of the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.
 2. Steel pipe with wrought-steel fittings and welded joints.

C. Aboveground piping installed in plenums and concealed locations shall be the following:
 1. Steel piping with wrought steel fittings and welded joints.

3.11 INDOOR PIPING SCHEDULE FOR SYSTEM PRESSURES MORE THAN 0.5 PSIG AND LESS THAN OR EQUAL TO 2 PSIG

A. Aboveground, branch piping NPS 1 and smaller is to be one of the following:
 1. Corrugated stainless steel tubing with mechanical fittings having socket or threaded ends to match adjacent piping.
 2. Steel pipe with malleable-iron fittings and threaded joints.

B. Aboveground, distribution piping is to be one of the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.
 2. Steel pipe with steel welding fittings and welded joints.

3.12 ABOVEGROUND, MANUAL GAS SHUTOFF VALVE SCHEDULE

A. Valves for pipe sizes NPS 2 and smaller at service meter are to be the following:
1. Two-piece, full-port, bronze ball valves with bronze trim.

B. Distribution piping valves for pipe sizes NPS 2 and smaller are to be the following:
 1. Two-piece, full-port, bronze ball valves with bronze trim.

C. Valves in branch piping for single appliance are to be the following:
 1. Two-piece, full-port, bronze ball valves with bronze trim.

END OF SECTION 231123
SECTION 232113 - HYDRONIC PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes pipe and fitting materials and joining methods for the following:
 1. Copper tube and fittings.
 2. Steel pipe and fittings.
 4. Transition fittings.
 5. Dielectric fittings.
 6. Bypass chemical feeder.
 7. Drain piping.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of the following:
 1. Pipe and tube.
 2. Fittings.
 4. Transition fittings.
 5. Bypass chemical feeder.

1.3 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Piping layout, or BIM model, drawn to scale, showing the items described in this Section, and coordinated with all building trades.

B. Field quality-control reports.

1.4 QUALITY ASSURANCE

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Hydronic piping components and installation shall be capable of withstanding the following minimum working pressure and temperature unless otherwise indicated:
 1. Hot-Water Heating Piping: 150 psig at 200 deg F.
 2. Chilled-Water Piping: 150 psig at 200 deg F.
 3. Makeup-Water Piping: 80 psig at 150 deg F.
 4. Blowdown-Drain Piping: 80 psig at 200 deg F.
 5. Air-Vent Piping: 80 psig at 200 deg F.
 6. Safety-Valve-Inlet and -Outlet Piping: Equal to the pressure of the piping system to which it is attached.
 7. Drain Piping: 150 deg F.
2.2 COPPER TUBE AND FITTINGS

A. Tube in "Drawn-Temper Copper Tube" Paragraph below is generally available in NPS 1/8 to NPS 12 (DN 6 to DN 300). Drawn-temper copper tube is commonly referred to as "hard" copper tube. Drawn-Temper Copper Tubing: ASTM B88, Type L.

B. Tube in "Annealed-Temper Copper Tube" Paragraph below is generally available in NPS 1/8 to NPS 12 (DN 6 to DN 300). Annealed-temper copper tubing is commonly referred to as "soft" copper tube. Annealed-Temper Copper Tubing: ASTM B88, Type L.

C. DWV Copper Tubing: ASTM B306, Type DWV.

2.3 STEEL PIPE AND FITTINGS

A. Steel Pipe: ASTM A53/A53M, black steel with plain ends; welded and seamless, Grade B, and wall thickness as indicated in "Piping Applications" Article.

B. Cast-Iron Threaded Fittings: ASME B16.4; Classes 125 and 250 as indicated in "Piping Applications" Article.

D. Malleable-Iron Unions: ASME B16.39; Classes 150, 250, and 300 as indicated in "Piping Applications" Article.

E. Wrought Cast- and Forged-Steel Flanges and Flanged Fittings: ASME B16.5, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 2. End Connections: Butt welding.
 3. Facings: Raised face.

2.4 JOINING MATERIALS

A. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch maximum thickness unless otherwise indicated.
 a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.

B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.

C. Solder Filler Metals: ASTM B32, lead-free alloys. Include water-flushable flux according to ASTM B813.

D. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for joining copper with copper; or BAg-1, silver alloy for joining copper with bronze or steel.

E. Welding Filler Metals: Comply with AWS D10.12M/D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
2.5 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Unions:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. A.Y. McDonald Mfg. Co.
 b. Capitol Manufacturing Company.
 c. Central Plastics Company.
 d. HART Industrial Unions, LLC.
 e. Jomar Valve.
 f. Matco-Norca.
 g. WATTS.
 h. Wilkins.
 i. Zurn Industries, LLC.
 2. Description:
 b. Pressure Rating: 125 psig minimum at 180 deg F.
 c. End Connections: Solder-joint copper alloy and threaded ferrous.

2.6 BYPASS CHEMICAL-FEED EQUIPMENT

A. Bypass Feeders: Steel, with corrosion-resistant exterior coating, minimum 3-1/2-inch fill opening in the top; and NPS 3/4 bottom inlet and top side outlet. Threaded fill cap with gasket seal and diaphragm to lock the top on the feeder when exposed to system pressure in the vessel.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

A. Hot-water heating piping, aboveground, NPS 2 and smaller, shall be any of the following:
 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and soldered or pressure-seal joints.
 2. Schedule 40, Grade B steel pipe; Class 125, cast-iron fittings; cast-iron flanges and flange fittings; and threaded joints.

B. Hot-water heating piping, aboveground, NPS 2-1/2 and larger, shall be any of the following:
 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
 2. Schedule 40 steel pipe, plain-end mechanical-coupled joints.

C. Chilled-water piping, aboveground, NPS 2 and smaller, shall be any of the following:
 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and soldered or pressure-seal joints.
 2. Schedule 40 steel pipe; Class 125, cast-iron fittings; cast-iron flanges and flange fittings; and threaded joints.

D. Chilled-water piping, aboveground, NPS 2-1/2 and larger, shall be any of the following:
 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
 2. Schedule 40 steel pipe, plain-end mechanical-coupled joints.
E. Makeup-water piping installed aboveground shall be the following:
 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.

F. Blowdown-Drain Piping: Same materials and joining methods as for piping specified for the
 service in which blowdown drain is installed.

G. Air-Vent Piping:
 1. Inlet: Same as service where installed with metal-to-plastic transition fittings for plastic
 piping systems according to piping manufacturer's written instructions.
 2. Outlet: Type K, annealed-temper copper tubing with soldered or flared joints.

H. Safety-Valve-Inlet and -Outlet Piping for Hot-Water Piping: Same materials and joining methods
 as for piping specified for the service in which safety valve is installed with metal-to-plastic
 transition fittings for plastic piping systems according to piping manufacturer's written
 instructions.

3.2 INSTALLATION OF PIPING

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping
 systems. Indicated locations and arrangements are used to size pipe and calculate friction loss,
 expansion, and other design considerations. Install piping as indicated unless deviations to
 layout are approved on Coordination Drawings.

B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms
 and service areas.

C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right
 angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated
 otherwise.

D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

E. Install piping to permit valve servicing.

F. Install piping at indicated slopes.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.

I. Install piping to allow application of insulation.

J. Bypass Feeders: Install in closed hydronic systems, including and equipped with the following:
 1. Install bypass feeder in a bypass circuit around circulating pumps unless otherwise
 indicated on Drawings.
 2. Install water meter in makeup-water supply.
 3. Install test-coupon assembly in bypass circuit around circulating pumps unless otherwise
 indicated on Drawings.
 4. Install a gate or full-port ball isolation valves on inlet, outlet and drain below feeder inlet.
 5. Install a swing check on inlet after the isolation valve.

K. Select system components with pressure rating equal to or greater than system operating
 pressure.
L. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.

M. Install drains, consisting of a tee fitting, NPS 3/4 ball valve, and short NPS 3/4 threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage.

N. Install piping at a uniform grade of 0.2 percent upward in direction of flow.

O. Reduce pipe sizes using eccentric reducer fitting installed with level side up.

P. Install branch connections to mains using tee fittings in main pipe, with the branch connected to the bottom of the main pipe. For up-feed risers, connect the branch to the top of the main pipe.

Q. Install unions in piping, NPS 2 and smaller, adjacent to valves, at final connections of equipment, and elsewhere as indicated.

R. Install flanges in piping, NPS 2-1/2 and larger, at final connections of equipment and elsewhere as indicated.

S. Install shutoff valve immediately upstream of each dielectric fitting.

T. Comply with requirements in Section 230516 "Expansion Fittings and Loops for HVAC Piping" for installation of expansion loops, expansion joints, anchors, and pipe alignment guides.

U. Comply with requirements in Section 230553 "Identification for HVAC Piping and Equipment" for identifying piping.

V. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."

W. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."

X. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 230518 "Escutcheons for HVAC Piping."

3.3 JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Soldered Joints: Apply ASTM B813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B828 or CDA’s "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B32.

D. Brazed Joints: Construct joints according to AWS’s "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8/A5.8M.

E. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

F. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

G. Plain-End Mechanical-Coupled Joints: Prepare, assemble, and test joints in accordance with manufacturer's written installation instructions.

3.4 INSTALLATION OF DIELECTRIC FITTINGS

A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric nipples.
C. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flange kits.
D. Dielectric Fittings for NPS 5 and Larger: Use dielectric flange kits.

3.5 INSTALLATION OF HANGERS AND SUPPORTS

A. Comply with requirements for seismic-restraint devices specified in Section 230548 "Vibration and Seismic Controls for HVAC."
B. Comply with requirements in Section 230529 "Hangers and Supports for HVAC Piping and Equipment" for hangers, supports, and anchor devices.
C. Install hangers for copper tubing and steel piping, with maximum horizontal spacing and minimum rod diameters, to comply with MSS-58, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.
D. Install hangers for plastic piping, with maximum horizontal spacing and minimum rod diameters, to comply with manufacturer's written instructions, locally enforced code, and authorities having jurisdiction requirements, whichever are most stringent.
E. Support horizontal piping within 12 inches of each fitting and coupling
F. Support vertical runs of copper tubing and steel piping to comply with MSS-58, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.
G. Support vertical runs of CPVC and PVC piping to comply with manufacturer's written instructions, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.

3.6 TERMINAL EQUIPMENT CONNECTIONS

A. Sizes for supply and return piping connections shall be the same as or larger than equipment connections.
B. Install control valves in accessible locations close to connected equipment.
C. Install ports for pressure gages and thermometers at coil inlet and outlet connections. Comply with requirements in Section 230519 "Meters and Gauges for HVAC Piping."

3.7 CHEMICAL TREATMENT

A. Fill system with fresh water and add liquid alkaline compound with emulsifying agents and detergents to remove grease and petroleum products from piping. Circulate solution for a minimum of 24 hours, drain, clean strainer screens, and refill with fresh water.

B. Add initial chemical treatment and maintain water quality in ranges noted above for the first year of operation.

3.8 IDENTIFICATION

A. Identify system components. Comply with requirements for identification materials and installation in Section 230553 "Identification for HVAC Piping and Equipment."

3.9 FIELD QUALITY CONTROL

A. Prepare hydronic piping according to ASME B31.9 and as follows:
 1. Leave joints, including welds, uninsulated and exposed for examination during test.
 2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
 3. Flush hydronic piping systems with clean water; then remove and clean or replace strainer screens.
 4. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Install blinds in flanged joints to isolate equipment.
 5. Install safety valve, set at a pressure no more than one-third higher than test pressure, to protect against damage by expanding liquid or other source of overpressure during test.

B. Perform the following tests on hydronic piping:
 1. Use ambient temperature water as a testing medium unless there is risk of damage due to freezing. Another liquid that is safe for workers and compatible with piping may be used.
 2. While filling system, use vents installed at high points of system to release air. Use drains installed at low points for complete draining of test liquid.
 3. Isolate expansion tanks and determine that hydronic system is full of water.
 4. Subject piping system to hydrostatic test pressure that is not less than 1.5 times the system's working pressure. Test pressure shall not exceed maximum pressure for any vessel, pump, valve, or other component in system under test. Verify that stress due to pressure at bottom of vertical runs does not exceed 90 percent of specified minimum yield strength or 1.7 times the "SE" value in Appendix A in ASME B31.9, "Building Services Piping."
 5. After hydrostatic test pressure has been applied for at least 10 minutes, examine piping, joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components, and repeat hydrostatic test until there are no leaks.
 6. Prepare written report of testing.

C. Perform the following before operating the system:
 1. Open manual valves fully.
 2. Inspect pumps for proper rotation.
 3. Set makeup pressure-reducing valves for required system pressure.
 4. Inspect air vents at high points of system and determine if all are installed and operating freely (automatic type), or bleed air completely (manual type).
5. Set temperature controls so all coils are calling for full flow.
6. Inspect and set operating temperatures of hydronic equipment, such as boilers, chillers, cooling towers, to specified values.
7. Verify lubrication of motors and bearings.

END OF SECTION 232113
SECTION 232116 - HYDRONIC PIPING SPECIALTIES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Hydronic specialty valves.
 2. Air vents.
 3. Air/dirt separators and purgers.
 4. Strainers.
 5. Flexible connectors.

1.2 ACTION SUBMITTALS

A. Product Data.

1.3 CLOSEOUT SUBMITTALS

A. Operation and maintenance data manuals.

1.4 QUALITY ASSURANCE

A. Pipe Welding: Certify procedures and operators in accordance with ASME BPVC, Section IX.

B. Pressure-relief and safety-relief valves and pressure vessels bear the appropriate ASME label. Fabricate and stamp air separators and expansion tanks to comply with ASME BPVC, Section VIII, Division 1.

PART 2 - PRODUCTS

2.1 HYDRONIC SPECIALTY VALVES

A. Bronze, Calibrated-Orifice, Balancing Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International/Smith-Cooper International; Tailwind Capital, LLC.
 b. Apollo Valves; a part of Aalberts Integrated Piping Systems.
 c. Armstrong Fluid Technology.
 d. Bell & Gossett; a Xylem brand.
 e. Caleffi North America.
 f. Flamco; a division of AALBERTS Ind.
 g. Gerard Engineering co.
 h. Griswold Controls.
 i. Hays Fluid Controls.
 j. IMI Flow Design, Inc.
 k. Jenkins Valves; a Crane Co. brand.
 l. Jomar Valve.
 m. NIBCO INC.
 n. Red-White Valve Corp.
 o. Tour & Anderson; available through Victaulic Company.
 p. Tunstall Corporation.
 q. Victaulic Company
2.2 AIR VENTS

A. Manual Air Vents:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Bell & Gossett; a Xylem brand.
 b. Caleffi North America.
 c. Flamco; a division of AALBERTS Ind.
 d. HCI; Hydronics Components Inc.
 e. Legend Valve & Fitting, Inc.
 f. WATTS.
2. Body: Bronze.
3. Internal Parts: Nonferrous.
4. Operator: Screwdriver or thumbscrew.
5. Inlet Connection: NPS 1/2.
7. CWP Rating: 150 psig.
8. Maximum Operating Temperature: 225 deg F.

B. Automatic Air Vents
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AMTROL, Inc.
 b. Armstrong Pumps, Inc.
 c. Bell & Gossett; a Xylem brand.
 d. Nexus Valve Inc.
 e. NuTech Hydronic Specialty Products.
 f. Spirotherm, Inc.
2. Body: Bronze or cast iron.
3. Internal Parts: Nonferrous.
5. Inlet Connection: NPS 1/2.
7. CWP Rating: 150 psig.
8. Maximum Operating Temperature: 240 deg F.

2.3 AIR/DIRT SEPARATORS AND PURGERS

A. Coalescing-Type Air and Dirt Separators:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AMTROL, Inc.
 b. Armstrong Products, Inc.
 c. Bell & Gossett; a Xylem brand.
d. Spirotherm, Inc.
2. Tank: Fabricated steel tank; ASME constructed and stamped for 125-psig working pressure and 270 deg F maximum operating temperature.
3. Coalescing Medium: Copper.
4. Air Vent: Threaded to the top of the separator.
5. Inline Inlet and Outlet Connections: Threaded to the bottom of the separator.
6. Blowdown Connection: Threaded to the bottom of the separator.
7. Size: Match system flow capacity.

2.4 STRAINERS

A. Y-Pattern Strainers:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Flexicraft Industries.
 b. Flo Fab Inc.
 c. FNW; Ferguson Enterprises, Inc.
 d. Griswold Controls.
 e. Hays Fluid Controls.
 f. Keckley Company.
 g. Metraflex Company (The).
 h. Nexus Valve, Inc.
 i. Titan Flow Control, Inc.
 j. Victaulic Company.
 k. WATTS.
 l. Zurn Industries, LLC.
 2. Body: ASTM A126, Class B, cast iron with bolted cover and bottom drain connection.
 3. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
 5. CWP Rating: 125 psig.

2.5 FLEXIBLE CONNECTORS

A. Stainless Steel Bellows, Flexible Connectors:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Flexicraft Industries.
 b. Flo Fab Inc.
 c. Metraflex Company (The).
 3. End Connections: Threaded or flanged to match equipment connected.
 5. CWP Rating: 150 psig.
 6. Maximum Operating Temperature: 250 deg F.

PART 3 - EXECUTION

3.1 INSTALLATION OF VALVES

A. Install calibrated-orifice balancing valve at each branch connection to return main.

B. Install calibrated-orifice, balancing valve in the return pipe of each heating or cooling terminal.
C. Install pressure-reducing valves at makeup-water connection to regulate system fill pressure.

3.2 HYDRONIC SPECIALTIES INSTALLATION

A. Install manual air vents at high points in piping, at heat-transfer coils, and elsewhere as required for system air venting.
 1. Provide air outlet drain line full size of air outlet to floor drain or to other point indicated on Drawings.

B. Install manual vents at heat-transfer coils and elsewhere as required for air venting.

C. Install automatic air vents at high points of system piping in mechanical equipment room only. Install manual vent at heat transfer coils and elsewhere as required for air venting.

D. Vent and purge air from hydronic system, and ensure that tank is properly charged with air to suit system Project requirements.

END OF SECTION 232116
SECTION 232513 - WATER TREATMENT FOR CLOSED-LOOP HYDRONIC SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes water treatment for closed-loop hydronic systems.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.
B. Shop Drawings: Pretreatment and chemical-treatment equipment, showing tanks, maintenance space required, and piping connections to hydronic systems.

1.3 INFORMATIONAL SUBMITTALS

A. Water-Analysis Provider: Verification of experience and capability of HVAC water-treatment service provider.
B. Field quality-control reports.
C. Water-Treatment Program: Written sequence of operation on an annual basis for the application equipment required to achieve water quality defined in "Performance Requirements" Article.
D. Water Analysis: Illustrate water quality available at Project site.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.5 QUALITY ASSURANCE

A. HVAC Water-Treatment Service Provider: An experienced HVAC water-treatment service provider, capable of analyzing water qualities, installing water-treatment equipment, and applying water treatment as specified in this Section.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Provide all hardware, chemicals, and other material necessary to maintain HVAC water quality in all systems, as indicated in this Specification. Water quality for hydronic systems shall minimize corrosion, scale buildup, and biological growth for optimum efficiency of hydronic equipment without creating a hazard to operating personnel or the environment.
B. Base HVAC water treatment on quality of water available at Project site, hydronic system equipment material characteristics and functional performance characteristics, operating personnel capabilities, and requirements and guidelines of authorities having jurisdiction.
C. Closed hydronic systems, including hot-water heating below 250 deg F and chilled water shall have the following water qualities:
 1. pH: Maintain a value within 9-10.5.
2. Alkalinity: Maintain a value within 100-500 ppm mg/L as CaCO(3).
3. Steel Corrosion Inhibitors: Provide sufficient inhibitors to limit mild steel corrosion to 1.0 mils per year. Maintain soluble iron concentrations at or below 0.2 mg/L.
4. Yellow Metal Corrosion Inhibitor: Provide sufficient copper and brass corrosion inhibitors to limit copper corrosion to 1.0 mils per year. Maintain soluble copper concentrations at or below 0.2 mg/L.
5. Scale Control: Provide softened water for initial fill and makeup. Where softened water is not used, provide sufficient scale inhibitors to prevent formation of scale and maintain all scale-forming material in solution.

2.2 CHEMICALS

A. Chemicals shall be as recommended by water-treatment system manufacturer, compatible with piping system components and connected equipment, and able to attain water quality specified in "Performance Requirements" Article.

PART 3 - EXECUTION

3.1 MAINTENANCE SERVICE

A. Scope of Maintenance Service: Provide chemicals and service program to maintain water conditions required above, to inhibit corrosion and scale formation for hydronic piping and equipment. Services and chemicals shall be provided for a period of one year from date of Substantial Completion and shall include the following:
 1. Initial water analysis and HVAC water-treatment recommendations.
 2. Startup assistance for Contractor to flush the systems, clean with detergents, and initially fill systems with required chemical treatment prior to operation.
 3. Periodic field service and consultation.
 5. Laboratory technical analysis.
 6. Analyses and reports of all chemical items concerning safety and compliance with government regulations.

3.2 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain HVAC water-treatment systems and equipment.

END OF SECTION 232513
SECTION 235216 - CONDENSING BOILERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract apply to this Section, including General and Supplementary Conditions and Division 01 Specification Sections.

1.2 SUMMARY

A. This Section includes packaged, factory-fabricated and assembled, gas-fired, fire-tube condensing boilers, trim and accessories for generating hot water.

1.3 SUBMITTALS

A. Product Data: Include performance data, operating characteristics, furnished specialties and accessories.
1. Prior to flue vent installation, engineered calculations and drawings must be submitted to Architect/Engineer to thoroughly demonstrate that size and configuration conform to recommended size, length and footprint for each submitted boiler.

B. Efficiency Curves: At a minimum, submit efficiency curves for 100%, 50% and 7% input firing rates at incoming water temperatures ranging from 80°F to 160°.

C. Pressure Drop Curve. Submit pressure drop curve for design conditions.

D. Shop Drawings: For boilers, boiler trim and accessories include:
1. Plans, elevations, sections, details and attachments to other work
2. Wiring Diagrams for power, signal and control wiring

E. Source Quality Control Test Reports: Reports shall be included in submittals.

F. Field Quality Control Test Reports: Reports shall be included in submittals.

G. Operation and Maintenance Data: Data to be included in boiler emergency, operation and maintenance manuals.

H. Warranty: Standard warranty specified in this Section

I. Other Informational Submittals:
1. ASME Stamp Certification and Report: Submit “H” stamp certificate of authorization, as required by authorities having jurisdiction, and document hydrostatic testing of piping external to boiler.

1.4 QUALITY INSURANCE

A. Manufacturer Qualifications: The manufacturer must have been regularly engaged in the manufacture of condensing hydronic boilers for not less than thirty (30) years. The manufacturer must be headquartered in North America and manufacture pressure vessels in an ASME-certified facility wholly owned by the manufacturer. The specifying engineer, contractor and end...
customer must have the option to visit the factory to witness test fire and other relevant procedures.

B. Electrical Components, Devices and Accessories: Boilers must be listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. AHRI Performance Compliance: Condensing boilers must be rated in accordance with applicable federal testing methods and is capable of achieving the energy efficiency and performance ratings within prescribed tolerances.

D. ASME Compliance: Condensing boilers must be constructed in accordance with ASME Boiler and Pressure Vessel Code, Section IV “Heating Boilers”.

E. ASHRAE/IESNA 90.1 Compliance: Boilers shall have minimum efficiency according to “Gas and Oil Fired Boilers – Minimum Efficiency Requirements”.

G. UL Compliance: Boilers must be tested for compliance with UL 795, “Commercial-Industrial Gas Heating Equipment.” Boilers shall be listed and labeled by a testing agency acceptable to authorities having jurisdiction.

H. NOx Emission Standards: When installed and operated in accordance with manufacturer’s instructions, the condensing boiler shall comply with NOx emissions referenced below:
 1. 9 ppm NOx corrected to 3% oxygen at all firing rates when firing on natural gas

1.5 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement and formwork requirements are specified in Division 23.

1.6 WARRANTY

A. Standard Warranty: Boilers shall include manufacturer’s standard form in which manufacturer agrees to repair or replace components of boilers that fail in materials or workmanship within specified warranty period.
 1. Warranty Period for Fire-Tube Condensing Boilers
 a. The pressure vessel/heat exchanger shall carry a 10-year from shipment, non-prorated, limited warranty against any failure due to condensate corrosion, thermal stress, mechanical defects or workmanship.
 b. The pressure vessel is warranted against failure due to thermal shock for 20 years from date of shipment.
 c. The burner shall be conditionally guaranteed against any failure for (5) years from shipment.
 d. Manufacturer labeled control panels are conditionally warranted against failure for (2) two years from shipment.
 e. All other components, with the exception of the igniter, flame detector and O2 sensor, are conditionally guaranteed against any failure for (18) eighteen months from shipment.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. This specification is based on the Benchmark Standard Series boilers as manufactured by AERCO International Inc. Equivalent units and manufacturers must meet all performance criteria, and will be considered upon prior approval.

B. Basis-of-Design Product: Subject to compliance with requirements, provide AERCO BMK, Benchmark or Benchmark Platinum Series Boiler Models or equal by:
 1. Approved Equals:
 a. AERCO Benchmark Platinum boilers BMK
 b. Bosch Buderus SB Series
 c. Superior Boiler – Creek Series

2.2 CONSTRUCTION

A. Description: Boiler shall be either natural gas, fired, fully condensing, fire tube design. Power burner shall have full modulation, discharge into a positive or negative pressure vent and the minimum firing rate shall not exceed the following per model:

Boilers that have an input greater than what is specified will not be considered. Boiler efficiency shall increase with decreasing load (output), while maintaining setpoint. Boiler shall be factory-fabricated, factory-assembled and factory-tested, fire-tube condensing boiler with heat exchanger sealed pressure-tight, built on a steel base, including insulated jacket, flue-gas vent, combustion-air intake connections, water supply, return and condensate drain connections, and controls.

B. Heat Exchanger: The heat exchanger shall be constructed of 439 stainless steel fire tubes and tube sheets, with a one-pass combustion gas flow design. The fire tubes shall be 1/2” or 5/8” OD, with no less than 0.049” wall thickness. The upper and lower stainless steel tubesheet shall be no less than 0.25” thick. The pressure vessel/heat exchanger shall be welded construction. The heat exchanger shall be ASME stamped for a working pressure not less than 150 psig. Access to the tubesheets and heat exchanger shall be available by burner and exhaust manifold removal. Minimum access opening shall be no less than 8-inch diameter.

C. Pressure Vessel:
 The pressure vessel shall be constructed of ASME SA53 carbon steel, with a 0.25-inch thick wall and 0.50-inch thick upper head. Inspection openings in the pressure vessel shall be in accordance with ASME Section IV pressure vessel code. The boiler shall be designed so that the thermal efficiency increases as the boiler firing rate decreases.

E. Modulating Air/Fuel Valves and Burner: The boiler burner shall be capable of the following firing turndown ratios without loss of combustion efficiency or staging of gas valves. The turndown ratios shall be 20:1.

The burner shall not operate above 7.5% oxygen level or 55% excess air. The burner shall produce less than 20 ppm or NOx, under standard calibration, corrected to 3% excess oxygen when firing on natural gas. The burner shall be metal-fiber mesh covering a stainless steel body with spark or proven pilot ignition and flame rectification. All burner material exposed to the combustion zone shall be of stainless steel construction. There shall be no moving parts within the burner itself. A modulating air/fuel valve shall meter the air and fuel input. The modulating motor must be linked to both the gas valve body and air valve body with a single linkage. The linkage shall not require any field adjustment. A variable speed cast aluminum pre-mix blower
shall be used to ensure the optimum mixing of air and fuel between the air/fuel valve and the burner.

F. Fuel: The boiler shall use one of the following gas train options:
1. Natural gas: The unit gas train shall be specifically designed and calibrated for a single predetermined fuel. The gas train shall be a ventless gas train.

G. Minimum boiler efficiencies shall be as follows at a 20 degree delta-T:

<table>
<thead>
<tr>
<th>EWT</th>
<th>100% Fire</th>
<th>50% Fire</th>
<th>7% Fire</th>
</tr>
</thead>
<tbody>
<tr>
<td>160 °F</td>
<td>86.5%</td>
<td>87%</td>
<td>87%</td>
</tr>
<tr>
<td>140 °F</td>
<td>87%</td>
<td>87.5%</td>
<td>87.5%</td>
</tr>
<tr>
<td>120 °F</td>
<td>88.5%</td>
<td>89%</td>
<td>90%</td>
</tr>
<tr>
<td>100 °F</td>
<td>93.2%</td>
<td>94.5%</td>
<td>95.2%</td>
</tr>
<tr>
<td>80 °F</td>
<td>95.6%</td>
<td>96.8%</td>
<td>98.2%</td>
</tr>
</tbody>
</table>

H. Exhaust Manifold: The exhaust manifold shall be of corrosion resistant cast aluminum or 316 stainless steel.

The exhaust manifold shall have a collecting reservoir and a gravity drain for the elimination of condensation.

I. Blower: The boiler shall include a variable-speed, DC centrifugal fan to operate during the burner firing sequence and pre-purge the combustion chamber.
1. Motors: Blower motors shall comply with requirements specified in Division 23 Section “Common Motor Requirements for HVAC Equipment.”
 a. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require a motor to operate in the service factor range above 1.0.

J. Ignition: Ignition shall be via spark or proven pilot ignition with 100 percent main-valve shutoff and electronic flame supervision.

K. Combustion Air: The boiler shall be designed such that the combustion air is drawn from the inside of the boiler enclosure, decoupling it from the combustion air supply and preheating the air to increase efficiency.

L. Combustion Air Filter: The boiler shall be equipped with an automotive high flow air filter to ensure efficient combustion and unhindered burner components operation.

M. Enclosure: The plastic and sheet metal enclosure shall be fully removable, allowing for easy access during servicing.

N. O₂ sensor located in the Combustion Chamber: The boilers shall be equipped with an Oxygen sensor. The sensor shall be located in the boiler combustion chamber. Boilers without Oxygen sensor or boilers with an Oxygen sensor in the exhaust shall not be acceptable due to measurement estimation and performance accuracy.
2.3 CONTROLS

A. See Controls Diagram.

B. The boiler shall have an integrated boiler control that provides contact closure for its associated accessories including but not limited to pump, valve and air inlet damper.
1. The control shall have a 5 inch color touch screen display as well as a six function buttons that are separate from the display. User shall have the ability to navigate the menus via touch screen or navigation buttons. Controls not equipped with navigation button options shall not be permitted.
2. The control shall be equipped with a multi-color linear LED light to indicate the level of firing and/or air/fuel valve position.
3. The control shall display two temperatures using two dedicated three-digit seven-segment displays.
4. The control shall offer an Enable/Disable toggle switch as well as two buttons for Testing and Resetting the Low Water Cutoff.

C. The Manager designated boiler control shall be capable of the following functions without the need for additional external controls:
1. Sequence up to 16 boilers.
2. Control boiler pumps and/or modulating motorized valves.
3. Building Automation: The control shall be able to communicate to Building Management systems using RS485 and communicate using Modbus RTU protocol.

D. The control system shall be segregated into three components: Edge Control Panel, Power Panel and Input/Output Connection Box. The entire system shall be Underwriters Laboratories recognized.

E. The control panel shall consist of seven individual circuit boards using surface-mount technology in a single enclosure. Each board shall be individually field replaceable. These circuit boards shall include:
1. A microcontroller board with integrated 5 inch touchscreen color display providing the user interface.
2. A 7-segment display board. This board includes two 3-digit 7-segment displays. These displays shall be used to view a variety of temperature sensor values and operating and startup function status.
3. An interface board connects the microcontroller board to internal components using ribbon cables.
4. An electric low-water cutoff board connects to the test and manual reset function on the microcontroller board.
5. A power supply board is designed to provide the different DC voltages to the rest of the boards. It also acts as voltage regulator and reduce power noise.
6. An ignition and combustion board. This board controls the air/fuel valve and Safety Shutoff Valve, flame status and ignition transformer.
7. A connector board used to connect all external electrical connection.

F. Control settings transfer using USB: The control shall simplify and significantly lessen startup and boiler setting time by being able to use a USB flash drive to copy settings from one boiler to another boiler. Installers shall use successfully preconfigured boiler settings in their portfolio to newly installed boilers.

G. Combustion calibration: The control shall offer at least 5 calibration points. The use of less than 5 calibration points is not permitted to improve overall system efficiency under all firing rates. Each combustion calibration point shall operate with 5 to 7% O₂ levels to improve operating efficiency. Deviating away from these values shall not be acceptable.
H. Unit and Plant Status: The control shall provide a quick view of the unit status and plant status.
 1. The unit status screen shall provide temperature setpoint, all water inlet and outlet and supply air and exhaust temperature sensors' values. It shall also provide unit current and target firing rates. Additional screens shall display unit run hours, cycle count and average cycles per hour.
 2. The plant status screens shall provide plant temperature setpoint, plant water supply and return temperatures, outdoor temperature. Additionally, a status screen shall show the boiler status of each plant unit, plant firing rate.
 3. Unit and Plant event history: The manager control shall display the last 500 historical events per plant or 200 historical events for single unit installations.

I. Software update: The control shall be capable of field software updates without a need for hardware component(s) replacement. This shall be performed either using software on a USB flash drive or via Internet connection. The software update mechanism shall be performed by a trained technician. The software update menus shall be secured using a password level. After the software update, the control shall retain all of its prior field settings.

J. Copy settings from one boiler to the other: To significantly reduce installation time by reducing long repetitive work, the control shall have the capability of saving its settings to a USB flash drive. In addition, the control shall have the ability of copying new settings from a flash drive.

K. The controls shall annunciate boiler and sensor status and include extensive self-diagnostic capabilities.

L. The control panel shall incorporate three self-governing features designed to enhance operation in external control modes. When operating by an external control signal, the control panel can work to eliminate nuisance faults, such as over-temperature, resulting from improper external signal or loss of external signal. These features include:
 1. Setpoint High Limit: Setpoint high limit allows for a selectable maximum boiler outlet temperature and acts as temperature liming governor. Setpoint limit is based on a PID function that automatically limits firing rate to maintain outlet temperature within a degree selectable band from the desired maximum boiler outlet temperature.
 2. Setpoint Low Limit: Allow for a selectable minimum operating temperature.
 3. Failsafe Mode: Failsafe mode allows the boiler to switch its mode to operate from an internal setpoint if its external control signal is lost, rather than shut off. This is a selectable mode, enabling the control can to shut off the unit upon loss of external signal, if so desired.

M. The boiler control system shall incorporate the following additional features for enhanced external system interface:
 1. System start temperature feature
 2. Pump delay timer
 3. Remote interlock circuit
 4. Delayed interlock circuit
 5. Delta-T Limiter
 6. Freeze protection
 7. Fault relay for remote fault alarm
 8. Warm-weather shutdown
 9. The control shall offer multi-level user security access using different passwords. For additional security, the passwords shall expire if control display was not touched for an extended period 30 minutes.

N. Each boiler shall include an electric, single-seated combination safety shutoff valve/regulator with proof of closure switch in its gas train. Each boiler shall incorporate dual over-temperature protection with manual reset, in accordance with ASME Section IV and CSD-1.
O. Each boiler shall utilize a low cost reliable automotive O₂ sensor that measures and monitors the oxygen content of the exhaust gases. The system shall adjust the blower speed to maintain optimal air-fuel ratios in the event of air inlet temperature changes. The system shall have the following capabilities:

1. The system shall provide warnings or alerts in the following cases:
 a. O₂ percentage out of range
 b. When O₂ sensor has fallen out of calibration

Output of O₂ information shall be display on the Edge [i] control panel.

The O₂ sensor shall be installed through the unit’s burner plate and measure the oxygen content directly within the unit’s combustion chamber.

Boilers without an equivalent O₂ sensing system will be deemed unacceptable. Due to the moisture content of flue gases from condensing boilers, placing the O₂ sensor in the exhaust manifold or stack will be deemed unacceptable.

Boilers which require their O₂ sensor be changed annually will be deemed unacceptable.

In addition to O₂ monitoring and alerting, the system shall be equipped with TComp™ combustion air temperature compensation. If the combustion air temperature changes, the control system will automatically compensate for air density changes by adjusting the blower speed. This will adjust oxygen and optimize the combustion efficiency under all seasonal temperature changes. Boilers without both O₂ monitoring/alerting and air temperature compensation shall be deemed unacceptable.

P. Each boiler shall be onAER ready with a standard Ethernet port and include a 5 year onAER subscription at no additional charge. AERCO’s onAER service grants the user online access to real time operation and status of their system plant from any computer, tablet or mobile device along with the following capabilities:

1. Efficiency status and trends
2. O₂ levels
3. Efficiency and performance optimization tips
4. Preventative Maintenance alerts and scheduling
5. Predictive Maintenance algorithms
6. Warning and error messages
7. Weekly or monthly performance and status reports
8. Manage multiple boiler plants or buildings
9. Customizable dashboard
10. Add email contacts for alerts and reports, including local AERCO trained technicians
11. Manage and store startup, maintenance and service documentation

The boiler manufacturer shall be able to provide a network hub or a network switch to connect up to 16 boilers to an online network.

Q. Each boiler shall have integrated Boiler Sequencing Technology (BST), capable of multiunit sequencing with lead-lag functionality and parallel operation. The system will incorporate the following capabilities:

1. Efficiently sequence 2 to 16 units on the same system to meet load requirement.
2. Integrated control and wiring for seamless installation of optional isolation valve. When valves are utilized, the system shall operate one motorized valve per unit as an element of load sequencing. Valves shall close and decreased load as units turnoff, with all opening under no-load conditions.
3. Automatically rotate lead/lag amongst the units on the chain and monitor run hours per unit and balance load in an effort to equalize run hours among active units.
4. Option to manually designate lead and last boiler.
5. Designated manager control, used to display and adjust key system parameters.
6. Automatic bump-less transfer of manager function to next unit on the chain in case of designated manager unit failure; manager/client status should be shown on the individual unit displays.

R. For boiler plants greater than 16 units, the Boiler Manufacturer shall supply as part of the boiler package a completely integrated AERCO Control System (ACS) to control all operation and energy input of the multiple boiler heating plant. The ACS shall be comprised of a microprocessor based control utilizing the MODBUS protocol to communicate with the Boilers via the RS-485 port. One ACS controller shall have the ability to operate up to 32 AERCO boilers.

The controller shall have the ability to vary the firing rate and energy input of each individual boiler throughout its full modulating range to maximize the condensing capability and thermal efficiency output of the entire heating plant. The ACS shall control the boiler outlet header temperature within ±2°F. The controller shall be a PID type controller and uses Ramp Up/Ramp down control algorithm for accurate temperature control with excellent variable load response. The ACS controller shall provide contact closure for auxiliary equipment such as system pumps and combustion air inlet dampers based upon outdoor air temperature.

The ACS shall have the following anti-cycling features:

- Manual designation of lead boiler and last boiler.
- Lead boiler rotation at user-specified time interval.
- Delay the firing/shutting down of boilers when header temperature within a predefined deadband.

When set on Internal Setpoint Mode, temperature control setpoint on the ACS shall be fully field adjustable from 50°F to 190°F in operation. When set on Indoor/Outdoor Reset Mode, the ACS will operate on an adjustable inverse ratio in response to outdoor temperature to control the main header temperature. Reset ratio shall be fully field adjustable from 0.3 to 3.0 in operation. When set on 4ma to 20ma Temperature Control Mode, the ACS will operate the plant to vary header temperature setpoint linearly as an externally applied 4-20 ma signal is supplied.

When set on MODBUS Temperature Control Mode, the ACS will operate the plant to vary header temperature setpoint as an external communication utilizing the MODBUS protocol is supplied via the RS-232 port. The ACS controller shall have a vacuum fluorescent display for monitoring of all sensors and interlocks. Non-volatile memory backup of all control parameters shall be internally provided as standard. The controller will automatically balance the sequence of operating time on each boiler by a first-on first-off mode and provide for setback and remote alarm contacts. Connection between central ACS system and individual boilers shall be twisted pair low voltage wiring, with the boilers ‘daisy-chained’ for ease of installation.

2.4 ELECTRICAL POWER

A. Controllers, Electrical Devices and Wiring: Electrical devices and connections are specified in Division 26 sections.
B. Single-Point Field Power Connection: Factory-installed and factory-wired switches, motor controllers, transformers and other electrical devices shall provide a single-point field power connection to the boiler.

2.5 VENTING

A. The exhaust vent must be UL Listed for use with Category II, III and IV appliances and compatible with operating temperatures up to 230°F, condensing flue gas service. UL-listed vents of Polypropylene must be sued with boilers.

B. Combustion-Air Intake: Boilers shall be capable of drawing combustion air from the outdoors via a metal or PVC duct connected between the boiler and the outdoors.

C. Common vent and common combustion air must be an available option for boiler installation. Consult manufacturer for common vent and combustion air sizing.

D. Follow guidelines specified in manufacturer’s venting guide.

2.6 SOURCE QUALITY CONTROL

A. Burner and Hydrostatic Test: Factory adjust burner to eliminate excess oxygen, carbon dioxide, oxides of nitrogen emissions and carbon monoxide in flue gas, and to achieve combustion efficiency. Perform hydrostatic testing.

B. Test and inspect factory-assembled boilers, before shipping, according to ASME Boiler and Pressure Vessel Code.

1. If boilers are not factory assembled and fire-tested, the local vendor is responsible for all field assembly and testing.

C. Allow Owner access to source quality-control testing of boilers. Notify Architect fourteen days in advance of testing.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Before boiler installation examine roughing-in for concrete equipment bases, anchor-bolt sizes and locations and piping and electrical connections to verify actual locations, sizes and other conditions affecting boiler performance, maintenance and operations.

1. Final boiler locations indicated on Drawings are approximate. Determine exact locations before roughing-in for piping and electrical connections.

B. Examine mechanical spaces for suitable conditions where boilers will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 BOILER INSTALLATION

A. Install boilers level on concrete bases. Concrete base is specified in Division 23 Section “Common Work Results for HVAC,” and concrete materials and installation requirements are specified in Division 03.

B. Install gas-fired boilers according to NFPA 54.
C. Assemble and install boiler trim.

D. Install electrical devices furnished with boiler but not specified to be factory mounted.

E. Install control wiring to field-mounted electrical devices

3.3 CONNECTIONS

A. Piping installation requirements are specified in other Division 23 sections. Drawings indicate general arrangement of piping, fittings and specialties.

B. Install piping adjacent to boiler to permit service and maintenance.

C. Install piping from equipment drain connection to nearest floor drain. Piping shall be at least full size of connection. Provide an isolation valve if required.

D. Connect gas piping to boiler gas-train inlet with unions. Piping shall be at least full size of gas rain connection. Provide a reducer if required.

E. Connect hot-water piping to supply and return boiler tappings with shutoff valve and union or flange at each connection.

F. Install piping from safety relief valves to nearest floor drain.

G. Boiler Venting
 1. Install flue venting kit and combustion-air intake.

H. Ground equipment according to Division 26 Section “Grounding and Bonding for Electrical Systems.”

I. Connect wiring according to Division 26 “Low-Voltage Electrical Power conductors and Cables.”

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections and prepare test reports.
 1. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect components, assemblies and equipment installations, including connections, and to assist in testing.

B. Tests and Inspections
 1. Perform installation and startup checks according to manufacturer’s written instructions.
 2. Perform hydrostatic test. Repair leaks and retest until no leaks exist.
 3. Start units to confirm proper motor rotation and unit operation. Adjust air-fuel ratio and combustion.
 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 a. Check and adjust initial operating set points and high- and low-limit safety set points of fuel supply, water level and water temperature.
 b. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

C. Remove and replace malfunctioning units and retest as specified above.
D. Occupancy Adjustments: When requested within 2 months of date of Substantial Completion, provide on-site assistance adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other than normal occupancy hours for this purpose.

E. Performance Tests:

The boiler manufacturer is expected to provide partial load thermal efficiency curves. These thermal efficiency curves must include at least three separate curves at various BTU input levels. If these curves are not available, it is the responsibility of the boiler manufacturer to complete the following performance tests:

1. Engage a factory-authorized service representative to inspect component assemblies and equipment installations, including connections, and to conduct performance testing.
2. Boilers shall comply with performance requirements indicated, as determined by field performance test. Adjust, modify, or preplace equipment to comply.
3. Perform field performance tests to determine capacity and efficiency of boilers.
 a. Test for full capacity.
 b. Test for boiler efficiency at [low fire, 20, 40, 60, 80, 100, 80, 60, 40 and 20] percent of full capacity. Determine efficiency at each test point.
4. Repeat tests until results comply with requirements indicated.
5. Provide analysis equipment required to determine performance.
6. Provide temporary equipment and system modifications necessary to dissipate the heat produced during test if building systems are not adequate.

END OF SECTION 235216
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>SECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELECTRICAL GENERAL PROVISIONS</td>
<td>260001</td>
</tr>
<tr>
<td>ELECTRICAL CONNECTIONS FOR EQUIPMENT</td>
<td>260070</td>
</tr>
<tr>
<td>ELECTRICAL SUPPORTS AND SEISMIC RESTRAINTS</td>
<td>260072</td>
</tr>
<tr>
<td>ELECTRICAL DEMOLITION</td>
<td>260080</td>
</tr>
<tr>
<td>CONDUIT RACEWAYS</td>
<td>260110</td>
</tr>
<tr>
<td>CONDUCTORS AND CABLES</td>
<td>260120</td>
</tr>
<tr>
<td>ELECTRICAL BOXES AND FITTINGS</td>
<td>260135</td>
</tr>
<tr>
<td>WIRING DEVICES</td>
<td>260140</td>
</tr>
<tr>
<td>VARIABLE FREQUENCY DRIVES</td>
<td>260156</td>
</tr>
<tr>
<td>DISCONNECT SWITCHES</td>
<td>260170</td>
</tr>
<tr>
<td>OVERCURRENT PROTECTIVE DEVICES</td>
<td>260180</td>
</tr>
<tr>
<td>GROUNDING</td>
<td>260452</td>
</tr>
</tbody>
</table>
SECTION 260001 – ELECTRICAL GENERAL PROVISIONS

PART 1 – GENERAL

1.1 RELATED DOCUMENTS:

A. Drawings and general provisions of Contract, including General and Supplementary Conditions and Division-1 Specification sections, apply to work of this section.

B. Architectural, Structural, Mechanical and other applicable documents also apply to work of this section.

1.2 DESCRIPTION OF WORK:

A. The contract documents indicate the extent of electrical work. Provide all labor, materials, equipment, supervision and service necessary for a complete electrical system as described in divisions 26, 27, and 28.

1.3 RELATED SECTIONS:

A. Other Divisions relating to electrical work apply to the work of this section. See other applicable Divisions including, but not necessarily limited to:

1. Division 1 – General and Supplementary Conditions
2. Division 2 – Existing Conditions
3. Division 3 – Concrete
4. Division 5 – Metals
5. Division 6 – Wood, Plastics, and Composites
6. Division 7 – Thermal and Moisture Protection
7. Division 8 – Openings
8. Division 9 – Finishes
9. Division 21 – Fire Suppression
10. Division 22 – Plumbing
11. Division 23 – Heating Ventilating and Air Conditioning
12. Division 27 – Communications
13. Division 28 – Electronic Safety and Security

1.4 INTERPRETATIONS OF DRAWINGS AND SPECIFICATIONS:

A. Prior to bidding the job, submit requests for clarification in writing to the Architect/Engineer prior to issuance of the final addendum.

B. After signing the contract, provide all materials, labor, and equipment to meet the intent, purpose, and function of the contract documents.

C. The following terms used in Division 26, 27, and 28 documents are defined as follows:

1. “Provide” - Means furnish, install, and connect, unless otherwise indicated.
2. “Furnish” - Means purchase new and deliver in operating order to project site.
3. “Install” - Means to physically install the items in-place.
4. “Connect” - Means make final electrical connections for a complete operating piece of
equipment. This includes providing conduit, wire, terminations, etc. as applicable.
5. “Or Equivalent” - Means to provide equivalent equipment. Such equipment must be approved by the Engineer prior to bidding.

1.5 EXAMINATION OF SITE:

A. Visit the site and verify existing field conditions prior to submitting bid.

B. All costs arising from site conditions and/or preparation shall be included in the base bid. No additional charges will be allowed due to inadequate site inspection.

1.6 QUALITY ASSURANCE:

A. Perform work in accordance with all governing codes, rules, and regulations including the following minimum codes (latest editions or as otherwise accepted by the Authorities Having Jurisdiction):

1. National Electric Code (NEC)
2. International Building Code (IBC)
3. International Fire Code (IFC)
4. International Mechanical Code (IMC)
5. International Plumbing Code (IPC)
6. American Disability Act (ADA)
8. Local Codes and Ordinances

B. Comply with all standards where applicable for equipment and materials including the following minimum standards:

1. Underwriter’s Laboratories (UL)
2. American Society for testing Materials (ASTM)
3. Certified Ballast Manufacturers (CBM)
4. Insulated Cable Engineers Association (ICEA)
5. National Electrical Manufacturer’s Institute (NEMA)
6. American National Standards Institute (ANSI)
7. Electrical Testing Laboratories (ETL)
8. National Fire Protection Association (NFPA)
9. Institute of Electrical and Electronics Engineers (IEEE)
10. American Institute of Electrical Engineer’s Electrical Power
11. Systems and Grounding in Commercial Construction
12. Illuminating Engineers Society (IES)

C. Provide new electrical equipment conforming to all requirements as set forth in the above standards. Provide UL labeled equipment where such label is applicable.

D. Comply with all state and local codes and ordinances. When conflicts occur among codes, standards, drawings, and/or specifications, the most stringent requirements shall govern.

E. Obtain all permits, inspections, etc. required by authority having jurisdiction. Include all fees in bid. Provide a certificate of approval to the owner’s representative from the inspection authority at completion of the work.

F. Provide only first-class workmanship from competent workers, conforming to the best electrical construction practices.
G. The contractor shall have a current state contracting license applicable to type of work to be performed under this contract.

1.7 SUBMITTALS:

A. The contractor shall submit complete shop drawings and other required submittals. Incomplete submittals will be returned to the contractor unreviewed. No time extensions or cost increases will be allowed for delays caused by the return of incomplete submittals.

B. Shop Drawings: After the contract is awarded, but prior to manufacture or installation of any equipment, submit eight (8) complete sets of shop drawings. Partially complete sets of shop drawings are not acceptable. Submit all shop drawings in one complete submittal package. Prior to submitting shop drawings, review and certify that they are in compliance with the contract documents; Sign all approved shop drawings. Allow a minimum of two weeks for architect/engineer to review shop drawings. Refer to architectural general provision section for additional requirements.

C. Provide equipment catalog “cut sheets”, brochures and/or drawings which clearly describe the proposed equipment. Include plans, elevations, sections, isometrics, and detailed engineering and dimensional information as applicable including equipment room layouts. Electrical room layouts are required to show all electrical equipment locations for all projects that include electrical rooms. Do not submit catalog sheets which describe several different items in addition to those items to be used, unless all relevant information is clearly identified. Bind each information set in three ring binder or binders of sufficient size or sizes to enclose all information. Organize all information by section. Provide separate tabbed covers for each section of Divisions 26, 27, and 28, indicating section number for each section requiring submittals.

D. Include on front cover of binder or binders the name and location of the project, architect, electrical engineer, general contractor, electrical contractor, subcontractors, supplier/vendor, order number, volume, date, and any other applicable information. Certify that shop drawings are submitted in accordance with the contract documents with a written statement indicating compliance. Submittals will be reviewed and comments produced two times maximum. Additional reviews will be billed at current rates.

1.8 OPERATION AND MAINTENANCE MANUALS:

A. Submit four (4) complete sets of operating instruction and maintenance manuals for all equipment and materials provided under Divisions 26, 27, and 28.

B. Provide manufacturer’s recommended operating and maintenance instructions, cleaning and servicing requirements, serial and model number of each piece of equipment, complete list of replacement parts, performance curves and data, wiring diagrams, warranties, and vendor’s name, address, and phone numbers. Do not submit information which describes several different items in addition to those items to be used, unless all relevant information is clearly identified. Assemble all data in completely indexed volume or volumes. Engrave the job title, and name, address, and phone numbers of the contractor on the front cover and on the spine. Incomplete O&M manuals will be returned to the contractor for corrections / additions.

1.9 RECORD DRAWINGS:

A. Maintain on a daily basis a complete set of “Red-Lined Drawings”, reflecting an accurate record of all work including addendums, revisions, and changes. Indicate precise dimensioned locations of all concealed work and equipment, including concealed or embedded conduit, junction boxes, etc. Record all “Red-Lined Drawing” information on a set of full sized prints of
the contract drawings.

B. Certify the "Red Lined Drawings" for correctness. Indicate on each drawing the name of the general and electrical contractors with signatures of each representative responsible for the work.

C. The electrical engineering design firm will create record (as-built) drawings from the certified red-lined drawings; however, the general and electrical contractors retain the responsibility for the accuracy of the record drawings.

1.10 WARRANTY:

A. Ensure that the electrical system installed under this contract is in proper working order and in compliance with drawings, specifications, and/or authorized changes and is free from electrical defects. Without additional charge, replace or repair, to satisfaction of the owner's representative, except from ordinary wear and tear, any part of the installation which may fail or be determined unacceptable within a period of one (1) year after final acceptance or as otherwise indicated in individual sections, but in no case less than one year. Warranty incandescent and fluorescent lamps only for a period of two months from the date of substantial completion.

B. Provide complete warranty information for each item including beginning of warranty period, duration of warranty, names, addresses, and telephone numbers and procedures for filing a claim and obtaining warranty services. Written warranties and guarantees are to be submitted separately as:

1. Originals bound in a binder clearly identified with the title, "WARRANTIES AND GUARANTEES," the project name, the project number, and the Contractor's business name.
2. Electronic documents in *.pdf format.

PART 2 – PRODUCTS

2.1 GENERAL:

A. All materials shall be new and shall bear the manufacturer's name, trade name, and the approved testing laboratory such as the UL label in every case where a standard has been established for that particular material. Used materials are acceptable only if specifically indicated on drawings.

2.2 SUBSTITUTION OF MATERIALS:

A. Provide only specified products or products approved by addendum. Substitutions will be considered if two copies of the proposal is received at the architect's/engineer's office eight (8) working days prior to the bid day. Include in the proposal the specified and proposed catalog numbers of the equipment under consideration and a catalog cut sheet(s) with pictorial and descriptive information. Certify that the equipment proposed is equal to that specified, that it has the same electrical and physical characteristics, compatible dimensions, and meets the functional intent of the contract documents.

B. It is the responsibility of the contractor to make all substituted equipment comply with the intent of the contract documents and bear all cost associated with conflicts arising from the use of
substituted equipment.

C. Provide samples if so required by the architect or engineer before or after bid day.

2.3 SPARE PARTS:

A. Provide spare parts as specified in Divisions 26, 27, and 28 sections. Deliver all spare parts to owner's representative prior to substantial completion.

PART 3 – EXECUTION

3.1 GENERAL:

A. Workmanship: Provide only first class workmanship from competent workers. Defective materials or workmanship will not be allowed on the project. Provide competent supervision for the work to be accomplished. Keep same foreman on the job, unless a change is authorized by the engineer.

B. Coordination: Prior to construction, layout electrical work and coordinate work with other trades. Sequence, coordinate, and integrate installation of materials and equipment for efficient flow of the work. Coordinate the installation of required supporting devices and sleeves to be set in poured-in-place concrete and other structural components, as they are constructed. Install electrical equipment to facilitate maintenance and repair or replacement of equipment components. Coordinate the installation of electrical materials and equipment above ceilings with suspension system, mechanical equipment and systems, and structural components. Coordinate with all utilities including power, communication, and data installations.

C. Provide cutting, drilling, channeling, etc. only as necessary for proper completion of the work. Do not cut structural members unless authorization is issued in writing by the architect/engineer.

D. Repairs: Repair damage to building, grounds, or utilities as a result of work under this contract at no additional cost to the owner.

E. Dimensioning: Electrical drawings indicate locations for electrical equipment only in their approximate location, unless specifically dimensioned. Do not scale electrical drawings for dimensional information. Refer to architectural drawings and shop drawings where applicable for locations of all electrical equipment. Field verify all dimension on the job site.

F. Provide block-outs, sleeves, demolition work, etc., required for installation of work specified in this division.

G. Standards: Provide electrical installation in accordance with manufacturer's written instructions, applicable requirements of NEC, NEMA standards, and NECA's "Standards of Installation", and in compliance with recognized industry practices to ensure that products fulfill requirements.

H. All workmen doing work of any nature on State of Utah projects must at all times carry their electrician's license with them and show it upon request. The acceptable ratio of apprentice to journeyman electricians on the job is 1:1.

3.2 REQUESTS FOR INFORMATION:
A. When it is clearly apparent that information is not adequately described in the construction documents or when a coordination problem exists, submit a request for information (RFI) through proper contractual channels. The electrical engineering design firm will provide a response through its contractual channel. Although verbal direction may be given to expedite changes, responses are not considered part of the contract documents until a change order has been issued and signed by the Owner or his designated representative. The Contractor shall bear all costs associated with proceeding on any change order that has not been approved by the Owner or his designated representative.

B. Any damages caused by construction delays due to frivolous RFI's, will be born solely by the Contractor.

3.3 SAFETY PRECAUTIONS:
A. Provide all necessary guards or construction barriers and take all necessary precautions to insure the safety of life and property.

3.4 CLEAN:
A. Clean up all equipment, conduit, fittings, wire, packing cartons, plastic, and other debris that is a direct result of the installation of the work of this division, both during the execution, and at the conclusion, of the project. Keep the site clean and safe during the progress of the work. Clean fixtures, interior and exterior of all equipment, and raceways prior to final acceptance. Vacuum interior of all electrical panels and equipment. Correct any damaged equipment. Touch-up or repaint if necessary.

3.5 TEMPORARY POWER:
A. Make arrangements with the proper institution authority for all temporary electricity.

B. Provide temporary power, complete with metering and wiring for lighting and power outlets for construction tools and equipment. Report the initial meter reading to the owner/institution, or otherwise as may be directed.

C. Service shall be provided with a main disconnect and all 20 ampere receptacles protected by 20 amp GFI, single-pole breakers. No attempt is made herein to specify construction power requirements for equipment in detail. Provide all electrical equipment and wiring as required.

D. As soon as permanent power and metering is available, the temporary power supply shall be disconnected and removed from the project site.

E. All temporary wiring shall meet the requirements of NEC Article 590 and the State Industrial Commission.

3.6 POWER OUTAGES:
A. All power outages required for execution of this work shall occur during non-standard working hours and at the convenience of the owner. Any electrical service interruption will be coordinated at least 7 days in advance of the power shut-off. Include all costs for overtime work in bid. Coordinate all outages and proceed only after receiving authorization from the owner's representative. Keep all outages to an absolute minimum.

3.7 STORAGE AND PROTECTION OF MATERIALS:
A. Provide storage space for storage of materials and apparatus and assume complete responsibility for all losses due to any cause whatsoever. Lost or damaged materials will be replaced at no additional cost to owner. Do not store materials and apparatus in any public thoroughfare or in any area on the site where such storage would constitute a hazard to persons in the vicinity. Protect completed work, work underway, and apparatus against loss or damage.

3.8 FIRE PENETRATION SEALS:

A. Seal all raceway and/or cable penetrations through fire-rated floors, wall, and ceilings to prevent the spread of smoke, fire, toxic gas or water through the penetration either before, during or after fire. Provide penetration sealants and fittings of ratings to match the rating of the penetrated materials so that the original fire rating of the floor or wall is maintained as required by Article 300-21 of the NEC.

B. Sealant Systems: Provide sealants, wall wraps, partitions, caps, and other accessories complying with UL 1479 (ASTM E-814) from the following where applicable:
 1. 3M Fire Barrier Sealing Penetration System
 2. Chase Foam Fire Stop System
 3. Thomas and Betts Flame Safe Fire Stop System
 4. Nelson Fire Stop Products

C. Fittings: Where applicable, provide OZ Type CFSF/I and CAFSF/I fire seal fittings for conduit and cable penetrations through concrete and masonry wall, floor, slabs, and similar structures.

D. Install sealants and fittings in accordance with all manufacturer's written instructions.

3.9 LABELING:

A. Engraved black plastic laminated, with white-core labels, 1/16" thick, shall be permanently attached on both the interior and exterior the following electrical equipment:
 1. Branch panels
 2. Disconnect switches
 3. Similar equipment.
 4. Junction boxes larger than 4x4x1/2.

B. The labels shall have 1/4" high, engraved letters, such as EF-1, AC-1, Panel A, etc.

3.10 TESTS:

A. Notify engineer prior to all testing specified herein at least three business days prior to testing. Engineer shall observe all tests to insure the proper operation of the electrical system.

3.11 PROJECT FINALIZATION AND START-UP:

A. Upon completion of the work, have each factory representative and/or subcontractor assist in start-up and testing of their respective systems.

B. Have each representative give personal instructions on operating and maintenance of their equipment to the owner's maintenance and/or operation personnel.

C. Have representatives certify each system with a written statement indicating that they have
performed start-up and final check out of their respective systems.

3.12 FINAL REVIEW:

A. Have the project foreman accompany their reviewing parties and remove coverplates, panel covers, access panels, etc. as requested, to allow review of the entire electrical system.

END OF SECTION 260001
SECTION 260070 – ELECTRICAL CONNECTIONS FOR EQUIPMENT

PART 1 – GENERAL

1.1 RELATED DOCUMENTS:

A. Drawings and general provisions of Contract, including General and Supplementary Conditions and Division-1 Specification Sections, apply to work of this section.

B. This section is a Division 26 General Provisions section, and is part of each Division 26, 27, and 28 sections making reference to electrical connections.

1.2 DESCRIPTION OF WORK:

A. Extent of electrical connections for equipment include all final electrical connections for all equipment having electrical requirements including, but not necessarily limited to the following:

1. Equipment specified under all divisions of the contract. Refer to other divisions for specific electrical requirements.

1.3 QUALITY ASSURANCE:

A. STANDARDS: Refer to Section 260001 – Electrical General Provisions as applicable.

B. SHOP DRAWINGS: Not required.

PART 2 – PRODUCTS

2.1 GENERAL:

A. Provide all materials for electrical connections including, but not necessarily limited to the following:

1. Raceways
2. Fittings
3. Conductors
4. Cords
5. Cord caps
6. Wiring devices
7. Pressure connectors
8. Lugs (CU-AL)
9. Heat-shrinkable tubing
10. Cable ties
11. Wire nuts
12. Other items and accessories as required.

B. Crimp on or slip-on type splicing materials designed to be used without wire stripping are not acceptable.
C. Power Distribution Blocks: Provide Square D Type LB or Equivalent.

D. Refer to other Division 26, 27, and 28 Sections for specification of electrical materials as applicable.

PART 3 – EXECUTION

3.1 GENERAL:

A. Make electrical connections in accordance with manufacturer's written instructions, applicable requirements of NEC, NEMA Standards, and NECA’s "Standards of Installation", and in compliance with recognized industry practices to ensure that products fulfill requirements.

3.2 CONNECTIONS:

A. Permanently Installed Fixed Equipment:

1. Install conductors in flexible conduit from junction box to equipment control panel or connection point.
2. Where such installations are subject to moisture, install in liquid-tight flexible conduit.

B. Movable equipment:

1. Provide wiring devices, cord caps, and multi-conductor cables as required.

C. Other methods as required by the NEC and/or as required by special equipment or field conditions.

D. Power Distribution Blocks: Unless noted otherwise on drawings, provide power distribution blocks only for tapping of feeders and branch circuits. Locate in junction box or gutter in NEMA ratings to suit application.

3.3 MANUFACTURER’S INSTRUCTIONS:

A. Obtain manufacturer's instruction and wiring diagram regarding electrical connections of each piece of equipment and provide connections in accordance therewith.

3.4 VERIFICATION OF LOAD CHARACTERISTICS:

A. Verify electrical load characteristics of all equipment prior to rough-in. Review respective shop drawings of all other Divisions and Owner's equipment manuals. Report any variances from electrical characteristics noted in the contract documents to the Architect/Engineer prior to rough-in.

B. Value of rough-in work, electrical equipment, etc. installed and/or purchased by the contractor not meeting equipment requirements shall be credited back to the owner.

END OF SECTION 260070
PART 1 – GENERAL

1.1 RELATED DOCUMENTS:

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY:

A. This Section includes the following:

1. Hangers and supports for electrical equipment and systems.
2. Seismic restraints for electrical equipment and systems.

1.3 DEFINITIONS:

B. Seismic Restraint: A structural support element such as a metal framing member, a cable, an anchor bolt or stud, a fastening device, or an assembly of these items used to transmit seismic forces from an item of equipment or system to building structure and to limit movement of item during a seismic event.

1.4 SUBMITTALS:

A. Product Data: Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of electrical support and seismic-restraint component used.

1. Tabulate types and sizes of seismic restraints, complete with report numbers and rated strength in tension and shear as evaluated by an agency acceptable to authorities having jurisdiction.
2. Annotate to indicate application of each product submitted and compliance with requirements.

B. Shop Drawings: Indicate materials and dimensions and identify hardware, including attachment and anchorage devices, signed and sealed by a qualified professional engineer. Include the following:

1. Fabricated Supports: Representations of field-fabricated supports not detailed on Drawings.
2. Seismic Restraints: Detail anchorage and bracing not defined by details or charts on Drawings. Include the following:
 a. Design Analysis: To support selection and arrangement of seismic restraints. Include calculations of combined tensile and shear loads.
 b. Details: Detail fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events.
 c. Preapproval and Evaluation Documentation: By an agency acceptable to
authorities having jurisdiction, showing maximum ratings of restraint items and
the basis for approval (tests or calculations).

C. Coordination Drawings: Show coordination of seismic bracing for electrical components with
other systems and equipment in the vicinity, including other supports and seismic restraints.

D. Welding certificates.

E. Qualification Data: For professional engineer and testing agency.

F. Field quality-control test reports.

1.5 QUALITY ASSURANCE:

A. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are
more stringent.

B. Testing of Seismic Anchorage Devices: Comply with testing requirements in Part 3.

C. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, “Structural Welding
Code - Steel.”

PART 2 – PRODUCTS

2.1 MANUFACTURERS:

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to
product selection:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers
offering products that may be incorporated into the Work include, but are not limited to,
manufacturers specified.

2.2 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS:

A. Rated Strength: Adequate in tension, shear, and pullout force to resist maximum loads
calculated or imposed under this Project, with a minimum structural safety factor of five times
the applied force.

B. Steel Slotted Support Systems: Comply with MFMA-3, factory-fabricated components for field
assembly.

1. Available Manufacturers:
 a. Cooper B-Line; a division of Cooper Industries.
 b. ERICO International Corporation.
 c. Allied Support Systems; Power-Strut Unit.
 d. GS Metals Corp.
 e. Michigan Hanger Co., Inc.; O-Strut Div.
 f. National Pipe Hanger Corp.
 g. Thomas & Betts Corporation.
 h. Unistrut; Tyco International, Ltd.
 i. Wesanco, Inc.
2. Finishes:
 a. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-3.

3. Channel Dimensions: Selected for structural loading and applicable seismic forces.

C. Raceway and Cable Supports: As described in NECA 1.

D. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.

E. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be malleable iron.

F. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

G. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:
 1. Verify suitability of fasteners in subparagraph below for use in lightweight concrete or concrete slabs less than 4 inches (100 mm) thick.
 2. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 a. Available Manufacturers:
 1) Hilti, Inc.
 2) ITW Construction Products.
 3) MKT Fastening, LLC.
 4) Simpson Strong-Tie Co. Inc.
 3. In the following subparagraph, use stainless steel anchors in corrosive environments.
 4. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel, for use in hardened portland cement concrete with tension, shear, and pullout capacities appropriate for supported loads and building materials in which used.
 a. Available Manufacturers:
 1) Cooper B-Line; a division of Cooper Industries.
 2) Empire Tool and Manufacturing Co., Inc
 3) Hilti, Inc.
 4) ITW Construction Products.
 5) MKT Fastening, LLC.
 6) Powers Fasteners.
 5. Clamps for Attachment to Steel Structural Elements: MSS SP-58, type suitable for attached structural element.
 7. Toggle Bolts: All-steel springhead type.

2.3 **SEISMIC-RESTRAINT COMPONENTS:**

A. Rated Strength, Features, and Application Requirements for Restraint Components: As defined in reports by an agency acceptable to authorities having jurisdiction.

1. Structural Safety Factor: Strength in tension, shear, and pullout force of components used shall be at least five times the maximum seismic forces to which they will be
subjected.

B. Angle and Channel-Type Brace Assemblies: Steel angles or steel slotted-support-system components; with accessories for attachment to braced component at one end and to building structure at the other end.

C. Cable Restraints: ASTM A 603, zinc-coated, steel wire rope attached to steel or stainless-steel thimbles, brackets, swivels, and bolts designed for restraining cable service.

1. Available Manufacturers:
 a. Amber/Booth Company, Inc.
 b. Loos & Co., Inc.
 c. Mason Industries, Inc.

2. Seismic Mountings, Anchors, and Attachments: Devices as specified in Part 2 "Support, Anchorage, and Attachment Components" Article, selected to resist seismic forces.

3. Hanger Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections to hanger rod, of design recognized by an agency acceptable to authorities having jurisdiction.

4. Bushings for Floor-Mounted Equipment Anchors: Neoprene units designed for seismically rated rigid equipment mountings, and matched to type and size of anchor bolts and studs used.

5. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for seismically rated rigid equipment mountings, and matched to type and size of attachment devices used.

2.4 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES:

A. Description: Welded or bolted, structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.

B. Materials: Comply with requirements in Division 5 Section "Metal Fabrications" for steel shapes and plates.

PART 3 – EXECUTION

3.1 APPLICATION

A. Comply with NECA 1 for application of hangers and supports for electrical equipment and systems, except if requirements in this Section are stricter.

B. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for raceways as within 12 inches of coupling, fitting, and box, at each 90 degrees bend, minimum of two supports per ten foot run. Minimum rod size shall be 1/4 inch (6 mm) in diameter.

C. Multiple Raceways: Install trapeze-type supports fabricated with steel slotted or other support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.

1. Secure raceways and cables to these supports with single-bolt conduit clamps, or as otherwise required by an agency acceptable to authorities having jurisdiction.

3.2 SUPPORT AND SEISMIC-RESTRAINT INSTALLATION:
A. Comply with NECA 1 for installation requirements, except as specified in this Article.

B. Raceway Support Methods: In addition to methods described in NECA 1, raceways may be supported by openings through structure members, as permitted in NFPA 70.

C. Install seismic-restraint components using methods approved by the evaluation service providing required submittals for component.

D. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static and seismic loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb (90 kg).

E. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:

1. To Wood: Fasten with lag screws or through bolts.
2. To New Concrete: Bolt to concrete inserts.
3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
4. To Existing Concrete: Expansion anchor fasteners.
5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches (100 mm) thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches (100 mm) thick.
6. To Steel: Beam clamps (MSS Type 19, 21, 23, 25, or 27) complying with MSS SP-69 Spring-tension clamps.
7. To Light Steel: Sheet metal screws.
8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate by means that meet seismic-restraint strength and anchorage requirements.

F. Drill holes for expansion anchors in concrete at locations and to depths that avoid reinforcing bars.

G. Do not drill or core cut holes for anchors or use powder-activated fasteners in post-tension slabs, joists, and beams.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS:

A. Comply with installation requirements in Division 5 Section "Metal Fabrications" for site-fabricated metal supports.

B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.

C. Field Welding: Comply with AWS D1.1/D1.1M.

 1. placement requirements are specified in Division 3 Section "Cast-in-Place Concrete."

3.4 INSTALLATION OF SEISMIC-RESTRAINT COMPONENTS:
A. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.

B. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.

C. Restraint Cables: Provide slack within maximums recommended by manufacturer.

D. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, upper truss chords of bar joists, or at concrete members.

3.5 FIELD QUALITY CONTROL:

A. Testing Agency: Engage a qualified independent testing and inspecting agency to perform field tests and inspections and prepare test reports.

1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.

2. Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless postconnection testing has been approved), and with at least seven days' advance notice.

4. Test at least four of each type and size of installed anchors and fasteners selected by Architect.

5. Test to 90 percent of rated proof load of device.

6. If a device fails test, modify all installations of same type and retest until satisfactory results are achieved.

C. Record test results.

END OF SECTION 260072
SECTION 260080 – ELECTRICAL DEMOLITION

PART 1 – GENERAL

1.1 RELATED DOCUMENTS:

A. Drawings and general provisions of Contract, including General and Supplementary Conditions and Division-1 Specification Sections, apply to work of this section.

B. This section is a Division 26 General Provisions section, and is part of each Division 26, 27, and 28 sections making reference to electrical demolition.

1.2 DESCRIPTION OF WORK:

A. Extent of electrical demolition work is indicated by drawings.

B. Electrical demolition items are shown to give a basic description of the extent of demolition work, but may not be inclusive.

C. Do not assume that the electrical drawings reflect as-built conditions. Visit and observe the project prior to submitting bid and determine extent of electrical demolition work.

1.3 QUALITY ASSURANCE:

A. Standards: Refer to Section 260001 - Electrical General Provisions as applicable.

PART 2 – PRODUCTS - Not Used.

PART 3 – EXECUTION

3.1 GENERAL:

A. Demolition work shall be laid out in advance to eliminate unnecessary cutting, drilling, channeling, etc. Where such cutting, drilling, or channeling becomes necessary, perform with care, use skilled mechanics of the trades involved. Cutting work of other contractors shall be done only with the consent of that contractor. Cutting of structural members is not permitted. Repair damage to building and equipment as a result of electrical demolition work under this contract at no additional cost to owner.

B. Obtain permission from the architect before penetrating any ceiling, floor, and wall surfaces.

3.2 METHODS:

A. Disconnect and remove any/all fixtures, devices, equipment, etc. required for proper completion of the work whether shown or not.

B. Relocate, rewire, and/or reconnect any/all fixtures, devices, equipment, etc. that for any reason obstructs construction.
C. Maintain circuit integrity and continuity of all existing circuits/feeders, and systems that interfere with or are interrupted by remodel work, unless those circuits/feeders are to be abandoned completely. Maintain all circuits and systems in operation during construction. Provide temporary panels, temporary wiring and conduits, etc. as required.

D. Leave all existing fixtures, devices, equipment, etc. In portions of the building not being remodeled, in working condition.

E. Remove and dispose of all raceways, conductors, boxes, devices, equipment, etc., that are not to be reused. Terminate at accessible junction box by providing proper knockout closure, tape conductors, and label as "spare" with circuit no., Zone no., or other characteristic identifying source.

F. Existing raceways may be reused, if in place, where in compliance with the contract documents and the National Electrical Code. Upgrade and/or provide new conduit supports where necessary for all raceways being reused. Insure integrity of existing raceways before re-use.

G. Completely remove all telephone or data cables which are to be removed back to source or as directed by owner.

3.3 PATCHING AND REPAIR:

A. Finished Surfaces: The electrical contractor is responsible for patching and repair of all existing interior surfaces pertaining to the installation of work under this Division, unless specifically noted elsewhere in the contract documents. Where patching and repair is necessary, surfaces shall be finished (painted, etc.) to match the adjacent materials, finished, and colors. Requirements of other Divisions such as Division 9 - finishes shall apply.

B. Hard Surfaces: Whenever excavation or trenching is required for the installation of electrical work, it shall be the responsibly of the electrical contractor to make repairs and/or replacements of hard finish surfaces such as concrete, asphalt, etc. Requirements of other Divisions such as Division 2 – Existing Conditions shall apply.

3.4 CONCEALING:

A. All raceways shall be concealed within the ceilings, walls, and floors, except in locations where exposed raceways are specifically permitted, such as equipment rooms and unfinished storage areas.

END OF SECTION 260080
SECTION 260110 – CONDUIT RACEWAYS

PART 1 – GENERAL

1.1 RELATED DOCUMENTS:
A. Drawings and general provisions of Contract, including General and Supplementary Conditions and Division-1 Specification Sections, apply to work of this section.
B. This section is a Division 26 General Provisions section, and is part of each Division 26, 27, and 28 sections making reference to conduit raceways.

1.2 DESCRIPTION OF WORK:
A. Extent of raceways is indicated by drawings and schedules.
B. Types of raceways in this section include the followings:
 1. Rigid Metal Conduit
 2. Intermediate Metal Conduit
 3. Electrical Metallic Tubing
 4. Flexible Metal Conduit
 5. Liquid-tight Flexible Metal Conduit

1.3 QUALITY ASSURANCE:
B. Manufacturers: Firms regularly engaged in the manufacture of raceway of types and sizes required, whose products have been in satisfactory service for not less than three (3) years.
C. Shop Drawings: Not required.

PART 2 – PRODUCTS

2.1 CONDUITS:
C. Electric Metallic Tubing (EMT): Provide electric metal tubing in accordance with Federal Specification WW-C-563 and ANSI C80.3.
D. Flexible Metal Conduit: Provide zinc-coated, flexible metal conduit in accordance with Federal
E. Liquid-Tight Flexible Metal Conduit: Provide liquid-tight, flexible metal conduit, constructed of single strip, flexible continuous, interlocked, and double-wrapped steel, galvanized inside and outside, coated with liquid-tight jacket of flexible Polyvinyl Chloride (PVC).

2.2 FITTINGS:

A. Rigid Metal Conduit and Intermediate Metal Conduit: Provide fully-threaded, malleable steel fittings, rain-tight and concrete-tight as applicable. Provide double locknuts and metal bushings at all conduit terminations. Install OZ Type B bushings on conduits 1-1/4” and larger.

B. Electric Metallic Tubing: Provide insulated throat, non-indenter, set screw, malleable steel fittings. Screws must have a full set. Provide concrete-tight compression-type fittings in suspended slabs. All EMT fittings shall be fabricated from steel. Die-cast fittings or fittings made from pot metal shall not be allowed. Indenter type fittings are not acceptable. Install OZ Type B bushings on conduits 1” and larger.

C. Flexible Metal Conduit: Provide flexible metal conduit fittings in accordance with Federal Specification W-F-406, Type 1, Class 1, and Style A. Commercial "greenfield" not less than 1/2” diameter or as otherwise specified on drawings is acceptable.

D. Liquid-Tight Flexible Metal Conduit: Provide liquid-tight flexible metal conduit fittings in accordance with Federal Specification W-F-406, Type 1, Class 3, Style G.

E. Non-Metallic Conduit: Provide non-metallic conduit fittings (PVC) in accordance with ANSI/NEMA TC 3 to match conduit types and materials.

F. Expansion Fittings: OZ Type AX, or equivalent to suit application.

G. Sealing Bushings: Provide OZ Type FSK, WSK, or CSMI as required by application. Provide OZ Type CSB internal sealing bushings.

H. Cable Supports: Provide OZ cable supports for vertical risers, type as required by application.

2.3 SIZES:

A. Provide conduits in sizes as indicated in contract documents or as otherwise specified herein, but not less than 3/4”.

PART 3 – EXECUTION

3.1 GENERAL:

A. Install raceway and accessories in accordance with manufacturer’s written instructions, applicable requirements of NEC, NEMA Standards, and NECA’s "Standards of Installation", and in compliance with recognized industry practices to ensure that products fulfill requirements.

3.2 LOCATIONS:

A. Rigid Metal Conduit and Fittings: Use for conduit bends greater than 22 degrees where buried below grade or slab on grade. Install RMC where raceway passes vertically through slab-on-
Boiler Replacement
Highland Jr. High School
Ogden School District
March 23, 2022

CONDUIT RACEWAYS

grade. Where raceways penetrate building, manholes, or vault walls and floors below grade, provide RMC for a minimum distance of 10' on the exterior side of the floor or wall. Use RMC for exposed runs where conduit is subject to moisture, weather, or mechanical injury. Use in hazardous locations in accordance with all NEC requirements.

B. Intermediate Metal Conduit and Fittings: Use for exposed runs where conduit is subject to moisture, weather, or mechanical injury. Use in hazardous locations in accordance with all NEC requirements.

C. Electric Metal Tubing and Fittings: Use for above-grade feeders, branch circuits, and signal and control circuit, unless specifically noted otherwise on drawings. Install in suspended slabs subject to local code requirements and fire rating considerations.

D. Flexible Metal Conduit and Fittings: Use as whips for lighting fixtures, fixed equipment where not exposed to weather of moisture, other devices where required by NEC, and as requested by the Engineer. Maximum length not to exceed 6', unless specifically approved by the Electrical Engineer.

E. Liquid-Tight Flexible Metal Conduit and Fittings: Use for connection to motor terminal boxes, fixed equipment where subject to moisture or weather, and other equipment subject to movement or vibration. Maximum length not to exceed 6', unless specified otherwise.

3.3 METHODS:
A. Maintain a minimum of 12" clearance between steam or hot water lines or other hot surfaces. Where such clearance is impractical, insulate conduit with approved materials.

B. Install conduits parallel with or at right angles to lines of the structure. Route conduits symmetrically where possible.

C. Field bends and offsets shall be made without flattening, kinking, rippling or destroying the smooth internal bore or surface of the conduit and to not less than NEC minimum radius. Conduit that shows signs of rippling or kinking shall not be installed. Conduits installed with wrinkles or kinks or otherwise in an unworkmanlike manner shall be replaced at no additional cost to owner.

D. Precaution shall be exercised to prevent accumulation of water, dirt or concrete in the conduits during the execution of the project. Conduits in which water or foreign matter has been permitted to accumulate shall be thoroughly cleaned or the conduits runs replaced where such accumulation cannot be removed by methods approved the engineer.

E. Any conduit which pierces airtight spaces or plenums shall be sealed to prevent air leakage with mastic acceptable to the Architect.

3.4 CONCEALING:
A. All raceways shall be concealed within the ceilings, walls, and floors, except in locations where exposed raceways are specifically permitted, such as equipment rooms and unfinished storage areas. In equipment rooms, if lighting raceways are run exposed, installation shall not be done until piping and duct work layout has been determined in order that lighting boxes may be located so as to avoid being covered by overhead ducts and piping. If lighting raceways in equipment rooms are concealed in the structural ceiling slab, after mechanical work is complete, exposed conduit extensions shall be run to locate lighting fixtures where they are not obscured by work of other trades.
3.5 **ELECTRICAL CONTINUITY:**

A. Provide electrically continuous conduit systems throughout.

3.6 **FIELD CUTS AND THREADS:**

A. Cut all conduits square. Remove all sharp or rough edges and ream all burrs, inside and outside. Provide clean sharp threads on RMC and IMC.

B. Engage at least five full threads on all RMC and IMC fittings. Before couplings or fittings are attached, apply one coat of red lead or zinc chromate to male threads of RMC or IMC. Apply coat of red lead, zinc chromate or special compound recommended by manufacture to conduit where conduit protective coating is damaged.

3.7 **CONDUIT ENDS:**

A. Cap all spare conduits. Cap or plug conduit ends during construction to prevent entrance of foreign material.

3.8 **SPARE CONDUITS:**

A. Install a 200 lb. polypropylene pull cord in each empty conduit run.

3.9 **CLEANING:**

A. Pull mandrel and swab through all conduits before installing conductors.

END OF SECTION 260110
SECTION 260120 – CONDUCTORS AND CABLES

PART 1 – GENERAL

1.1 RELATED DOCUMENTS:
 A. Drawings and general provisions of Contract, including General and Supplementary Conditions and Division-1 Specification Sections, apply to work of this section.
 B. This section is a Division 2 General Provisions section, and is part of each Division 26, 27, and 28 sections making reference to conductors and cables.

1.2 DESCRIPTION OF WORK:
 A. This section includes building wires and cables and associated connectors, splices, and terminations for wiring systems rated 600 V and less.
 B. Types of conductors and cables in this section include the following:
 1. Copper Conductors.
 C. Applications for conductors and cables required for project include:
 1. Branch Circuits.

1.3 SUBMITTALS:
 A. Product Data: For each type of conductor and/or cable indicated.
 B. Field Quality-Control Test Reports: From Contractor. Refer to Section 260001 – General Electrical Provisions.

1.4 QUALITY ASSURANCE:
 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
 B. Comply with NFPA 70.

PART 2 – PRODUCTS

2.1 GENERAL:
 A. Manufacturers: In other Part 2 articles where subparagraph titles below introduce lists, provide products by the manufacturer specified, subject to compliance with requirements.
 B. Ambient Conditions: Conductors used for branch circuits in areas where the ambient conditions exceed 30 degree C. shall be provided with insulation approved for that temperature.
C. Wire Sizes: As indicated on electrical drawings or as specified herein, but in no case less than No. 12 AWG.

2.2 COPPER CONDUCTORS:

A. Manufacturers:

1. Cerro Wire & Cable Company.
2. General Cable Technologies Corporation.

B. Refer to Part 3 "Conductor and Cable Applications" Article for application requirements.

C. References and Ratings:

1. ICEA S-95-658 / NEMA WC70.
2. ASTM.
3. UL Standard 83.
4. UL Standard 1063 (MTW).
5. Federal Specification J-C-30B.
6. NEC.

D. Conductor Material: Copper.

E. Stranding: Solid conductor for No. 12 AWG, stranded for No. 10 AWG and larger.

F. Conductor Insulation Types: Thermoplastic-insulated, Type THHN / THWN-2.

2.3 CONNECTORS AND SPLICES:

A. Manufacturers:

1. AFC Cable Systems, Inc.
2. AMP Incorporated/Tyco International.
3. Hubbell/Anderson.
4. O-Z/Gedney; EGS Electrical Group LLC.
5. 3M Company; Electrical Products Division.

B. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

C. Splices for wire sizes #10 and smaller shall be screw-on type similar to scotch or ideal wing nut connectors. Crimp-on splices designed to be used without wire stripping are not acceptable.

PART 3 – EXECUTION

3.1 GENERAL:

A. Install conductors, cables, and accessories as indicated, in compliance with manufacturer’s written instruction, applicable requirements of NEC, NECA’s "Standards of Installation", and in accordance with recognized industry practices to ensure that products fulfill requirements.
3.2 CONDUCTOR AND CABLE APPLICATIONS:

A. Branch Circuits:
 1. Exposed, including in crawlspaces: Copper conductors in raceway.

3.3 INSTALLATION:

A. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

B. Use pulling means; including fish tape, cable, rope, and basket-weave wire/cable grips that will not damage cables or raceway.

C. When raceway is not required, install concealed cables parallel and perpendicular to surfaces of structural members, and follow surface contours where possible.

D. Support cables according to other applicable specification sections.

E. Seal around cables penetrating fire-rated elements to comply with applicable fire stop specification sections.

F. Color Coding: Color code secondary service, feeder, and branch circuit conductors. Colors shall remain consistent throughout the project and shall match existing coding system where applicable.
 1. Conductor sizes No. 6 AWG and smaller: Colored insulation.
 2. Conductors sizes No. 4 AWG and larger: 2 inch (51 mm) band of Colored adhesive marking tape applied at all terminations, junction boxes, and pull boxes.
 3. Branch circuit switched-legs and travelers: Colored insulation (in colors other than those indicated below).
 4. Color-code 120/208V system conductors:
 A. Phase A: Black.
 B. Phase B: Red.
 C. Phase C: Blue.
 D. Neutral A: White with Black stripe.
 E. Neutral B: White with Red stripe.
 F. Neutral C: White with Blue stripe.
 G. Neutral (Shared when allowed): White
 H. Ground: Green.
 I. Isolated Ground: Green with yellow tracer.

3.4 HOMERUN CIRCUITS:

A. Homerun circuits may be combined in common conduits at the option of the contractor in compliance with the following:
 1. Three-Phase Installations: Not more than three single-phase circuits in one conduit, unless specifically noted otherwise, if each circuit is from a different phase (a, b, or c).
 2. Single-Phase Installations: Not more than two single-phase circuits in one conduit, unless specifically noted otherwise, if each circuit is from a different phase (a or b).

3.5 NEUTRAL CONDUCTORS:
A. **LINE-TO-NEUTRAL BRANCH CIRCUITS:** Provide a dedicated neutral for each line-to-neutral branch circuit. Size the neutral conductor the same as the phase conductor. In each outlet or junction box containing multiple neutral conductors, tag each neutral to identify which circuit it serves.

3.6 VOLTAGE DROP:

A. Provide branch circuit conductors in sizes such that voltage drop for branch circuits do not exceed 3 percent at the farthest outlet. Provide service, feeder, and branch circuit conductors so that the voltage drop on the entire electrical system does not exceed 5 percent at the farthest outlet. This shall be strictly followed regardless of the conductor sizes indicated on the electrical drawings. Increase conductor sizes (and conduits where necessary to comply with NEC conduit fill requirements) as necessary to accommodate this requirement. Calculations shall be based on the following:

1. **Lighting Branch Circuits:** Connected load plus 25% spare.
2. **Appliance and Equipment Branch Circuits:** Nameplate or NEC required load.
3. **120V Convenience Outlet Branch Circuits:** 12 amps minimum, but in no case less than NEC loading requirements. Use the following schedule:

<table>
<thead>
<tr>
<th>Distance (feet)</th>
<th>Wire Size (AWG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-80</td>
<td>#12</td>
</tr>
<tr>
<td>81-125</td>
<td>#10</td>
</tr>
<tr>
<td>126-200</td>
<td>#8</td>
</tr>
<tr>
<td>201-320</td>
<td>#6</td>
</tr>
</tbody>
</table>

4. Use the NEC method to calculate voltage drop.

3.7 CONNECTIONS:

A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

B. Make splices and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.

C. **Wiring at Outlets:** Install conductor at each outlet, with at least 6 inches (150 mm) of slack. Use pig tails when wiring outlets.

3.8 FIELD QUALITY CONTROL:

A. **Testing:** Perform the following field quality-control testing:

1. **Visual and Mechanical Inspection:**
 - A. Inspect cables for physical damage and proper connection in accordance with the electrical construction documents.
 - B. Test cable mechanical connections to manufacturer’s recommended values with a calibrated torque wrench.
 - C. Check cable color coding for compliance with electrical specifications.

2. **Electrical Tests:**
 - A. Perform insulation resistance test on each conductors for feeders 100 amps and greater with respect to ground and adjacent conductors. Applied potential shall be 1000 volts dc for 1 minute.
CONDUCTORS AND CABLES

B. Perform continuity test to insure proper cable connection.

3. Test Values:
 A. Minimum insulation resistance values shall not be less than two megohms.

B. Test Reports: Prepare a written report and submit to the Electrical Engineer at the completion of the project. The report shall include the following:

1. Test procedures used.
2. Test results that comply with requirements.
3. Test results that do not comply with requirements and corrective action taken to achieve compliance with requirements.

END OF SECTION 260120
SECTION 260135 – ELECTRICAL BOXES AND FITTINGS

PART 1 – GENERAL

1.1 RELATED DOCUMENTS:
A. Drawings and general provisions of Contract, including General and Supplementary Conditions and Division-1 Specification Sections, apply to work of this section.
B. This section is a Division 26 General Provisions section, and is part of each Division 26, 27, and 28 sections making reference to electrical boxes and fittings.

1.2 DESCRIPTION OF WORK:
A. Extent of electrical boxes and fittings work is indicated by drawings and schedules.
B. Types of electrical boxes and fittings in this section include the following:
 1. Outlet Boxes
 2. Junction Boxes
 3. Pull Boxes
 4. Conduit Bodies
 5. Bushings
 6. Locknuts
 7. Knockout Closures
 8. Miscellaneous Boxes and Fittings

1.3 QUALITY ASSURANCE:
A. Standards: Refer to Section 260001 – Electrical General Provisions as applicable.
B. Manufacturers: Firms regularly engaged in the manufacture of boxes and fittings required, whose products have been in satisfactory service for not less than three years.
C. Shop Drawings: Submit shop drawings on floor boxes only where required.

PART 2 – PRODUCTS

2.1 INTERIOR OUTLET BOXES:
A. General: Provide one piece, galvanized or cadmium-plated, flat-rolled, sheet steel interior outlet boxes of types, shapes, and sizes to suit respective location and installation. Construct with stamped knockouts on back and sides and with threaded screw holes. Provide corrosion-resistant screws for securing boxes, covers, and wiring devices. Size all junction boxes in accordance with NEC Table 314.16(A), with a minimum box size of 4” x 4” x 1-1/2”. Where three raceway entries are made, provide outlet boxes with a minimum depth of 2-1/8”. Where four or more raceway entries are made, provide outlet boxes with a minimum depth of 4-11/16”. Gangable boxes shall not be used.
2.2 JUNCTION AND PULL BOXES:
 A. Provide code-gauge sheet steel junction and pull boxes, with removable screw-on covers and welded seams, of types, shapes, and sizes to suit each respective location and installation. Size all junction and pull boxes in accordance with NEC 314.28. Provide stainless steel nuts, bolts, screws, and washer.

2.3 CONDUIT BODIES:
 A. Provide galvanized, cast-metal conduit bodies of type, shapes, and sizes to suit respective locations and installation. Construct with threaded conduit entrance ends and removable covers. Provide corrosion-resistant screws.
 B. Aluminum boxes and fitting shall not be permitted.

2.4 CONDUIT CONNECTIONS:
 A. Box connectors 3/4" and larger shall be insulated, throat-type or equal type plastic bushings. Provide double locknuts and insulating plastic bushings for RMC and IMC terminating at panels and boxes.
 B. Where RMC penetrates building, manholes, or vault walls and floors below grade, provide sealing bushings with external membrane clamps as applicable. Provide segmented internal sealing bushings in all raceways penetrating building walls and slabs below grade, and in all above grade raceway penetrations susceptible to moisture migration into building through raceway. Where RMC terminates in manhole, vault, or pull box, provide insulated grounding bushings. Also see Section 260135 – Electrical Boxes and Fittings.
 C. Install OZ type "B" connectors for all conduits 1" and larger.
 D. Provide cable supports in all vertical risers in accordance with NEC 300-19.

2.5 EXPANSION FITTINGS:
 A. Provide expansion joint fittings in all conduit runs crossing structural expansion joints, whether above-grade, in slab-on-grade, or in suspended slabs. Provide OZ type "AX" or approved equivalent, size to the raceway.

2.6 ACCESSORIES:
 A. Provide all accessories including, but not necessarily limited to, bushings, knockout closures, locknuts, offset connectors, etc. of types, shapes, and sizes to suit respective locations and installation. Construct of corrosion-resistant steel.

PART 3 – EXECUTION

3.1 GENERAL:
 A. Install electrical boxes and fittings in accordance with manufacturer's written instruction, applicable requirements of the NEC, NEMA Standards, and NECA's "Standards of Installation", and in compliance with recognized industry practices to ensure that products fulfill requirements.
3.2 METHODS:

A. Remove knockouts only for entering conduits. Provide knockout closures to cap unused knockout holes where blanks are mistakenly removed.

B. Do not use condulets in place of elbows or junction boxes. Condulets in sizes 2” or larger shall not be used, unless specifically approved by the electrical engineer.

C. Install boxes and conduit bodies in readily accessible locations. Install recessed boxes with faces of boxes or rings flush with finished surfaces. Seal all openings between outlet box and adjacent surfaces with plaster, grout, or similar suitable material.

D. Install junction boxes or condulets in conduit runs as required at 100 foot maximum intervals on long runs. This shall apply to concrete junction boxes in grade and junction boxes within the building.

E. Provide electrical connections for installed boxes.

3.3 IDENTIFICATION:

A. Mark circuit number on exterior side of junction boxes located in ceilings such that circuits numbers are readily identifiable. For outlet boxes in wall, mark circuit numbers on interior sides of outlet boxes.

B. Identification labels shall be as follows:

 Normal Power Black with White letters

END OF SECTION 260135
SECTION 260140

WIRING DEVICES

PART 1 – GENERAL

1.1 RELATED DOCUMENTS:
 A. Drawings and general provisions of Contract, including General and Supplementary Conditions and Division-1 Specification Sections, apply to work of this section.
 B. This section is a Division 26 General Provisions section, and is part of each Division 26, 27, and 28 sections making reference to wiring devices.

1.2 DESCRIPTION OF WORK:
 A. Extent of wiring device work is indicated by drawings and schedules.
 B. Types of electrical wiring devices in this section include the following:
 1. Receptacles

1.3 QUALITY ASSURANCE:
 A. STANDARDS: Refer to Section 26 0001 – Electrical General Provisions as applicable.
 B. SHOP DRAWINGS:
 1. Submit manufacturer’s data on all electrical wiring devices.
 2. Where occupancy sensors are required, provide scaled drawing showing manufacturer’s recommended locations.

PART 2 – PRODUCTS

2.1 GENERAL:
 A. Provide factory-fabricated wiring devices, in types, and electrical ratings for applications indicated and complying with NEMA standards Pub No. WD 1; nylon construction, 20 amp rating minimum.
 B. Provide wiring devices in colors selected by Architect/Engineer. Provide red receptacle outlets where devices are circuited to standby power.

2.2 RECEPTACLES:
 A. Provide duplex receptacles from one of the following manufacturers:

 Manufacturer CO GFCI IG
B. Where indicated on the electrical drawings and/or as otherwise required by the NEC, provide heavy-duty, straight-blade, tamper-resistant, specification-grade, 20-amp duplex receptacles from one of the following manufacturers:

<table>
<thead>
<tr>
<th>Basis-of-Design Manufacturer</th>
<th>CO</th>
<th>GFCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hubbell</td>
<td>HBL5362_TR</td>
<td>GFTRST20_</td>
</tr>
</tbody>
</table>

Equivalent products from Pass & Seymour and Cooper are also acceptable.

C. Where duplex receptacles are shown with an “H” subscript on the electrical drawings and/or as otherwise required by the NEC, provide heavy-duty, straight-blade, tamper-resistant, specification-grade, hospital-grade, 20-amp duplex receptacles from one of the following manufactures:

<table>
<thead>
<tr>
<th>Basis-of-Design Manufacturer</th>
<th>CO</th>
<th>GFCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hubbell</td>
<td>8300_TRA</td>
<td>GFTRST83_</td>
</tr>
</tbody>
</table>

Equivalent products from Pass & Seymour and Cooper are also acceptable.

D. Where duplex receptacles are shown with an “USB” subscript on the electrical drawings, provide USB-charger (Types A & C), straight-blade, tamper-resistant, specification-grade, hospital-grade, 20-amp duplex receptacle from one of the following manufactures:

<table>
<thead>
<tr>
<th>Basis-of-Design Manufacturer</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hubbell</td>
<td>USB8300AC5_</td>
</tr>
</tbody>
</table>

Equivalent products from Pass & Seymour and Cooper are also acceptable.

E. Abbreviations are defined as follows:

1. CO- Convenience Outlet Duplex Receptacle
2. GFCI- Ground Fault Circuit Interrupter duplex Receptacle
3. IG- Isolated Ground Duplex Receptacle

F. Must have one-piece Brass back strap and back wire grounding clamp (Does not apply to GCFI or isolated ground).

2.3 FLOOR SERVICE OUTLETS:

A. Provide all receptacles and special purpose outlets required in floor boxes. See Section 26 0135 – Electrical Boxes and Fittings. Provide coverplates, carpet flanges, etc. in finishes or colors selected by Architect/Engineer.

2.4 COVERPLATES:

A. Wall Plates: Provide coverplates for all wiring devices. In all finished areas, provide stainless steel coverplates. Provide ganged coverplates for all switches and/or dimmers. Provide pre-
marked coverplates for special purpose outlet indicating voltage, amperages, and phase. Provide raised stamped, galvanized, steel plates in all unfinished areas. Provide weather-proof coverplates for outlets exposed to weather and moisture.

PART 3 – EXECUTION

3.1 GENERAL:
A. Install wiring devices and accessories in accordance with manufacturer's written instruction, applicable requirements of the NEC, NEMA Standards, and NECA's "Standards of Installation", and in compliance with recognized industry practices to insure that products fulfill requirements.

3.2 METHODS:
A. Install wiring devices only in electrical boxes which are clean and free from excess building materials, dirt, and debris. Do not install wiring devices until painting work is completed.
B. Replace receptacles and/or coverplates which are damaged, stained, or burned.

3.3 GFCI RECEPTACLES:
A. Provide separate neutral conductor from panel to each GFCI receptacle circuits.
B. Install GFCI receptacles for all receptacles installed in restrooms, outdoors, or within six feet of any sink. All receptacles in kitchens shall be GCFI protected.
C. Do not wire standard receptacles on the load side of GFCI receptacle - Install GFCI receptacles.

3.4 GROUNDING:
A. Provide electrical continuous, tight, grounding connections for wiring devices.

3.5 TESTING:
A. Prior to energizing circuitry, test wiring devices for electrical continuity and proper polarity connections. After energizing circuitry, test wiring devices to demonstrate compliance with requirements.

3.6 IDENTIFICATION:
A. All devices shall be identified on the cover plate with the panel board name and the circuit number by a black on clear adhesive label.
B. In each outlet, tag each wire to identify the circuit it serves.

END OF SECTION 260140
SECTION 26 0156 - VARIABLE FREQUENCY DRIVES

PART 1 – GENERAL

1.1 RELATED DOCUMENTS:

A. Drawings and general provisions of this contract, including general and supplementary conditions and division 1 specification sections, apply to work of this section.

B. This section is a Division 26 General Provisions section, and is part of each Division 26, 27, and 28 sections making reference to variable frequency drives.

C. Information contained on the drawings and/or schedules shall detail the additional specific requirements for the Variable Frequency Drive (VFD) system equipment.

1.2 SCOPE OF WORK:

A. It is the intent of this specification to set the minimum acceptable requirements for the design, construction, installation, commissioning and vendor support requirements for the VFD systems herein specified.

B. The VFD installation and associated equipment coordination and interface shall be provided by the electrical contractor.

1.3 CODES AND STANDARDS:

A. The equipment supplied under this specification shall conform to the latest applicable codes and standards of the following:

1. NEC - (NFPA 70) - National Electric Code.
2. ANSI/NEMA ICS 6 - Enclosures for Industrial Controls and Systems.
3. NEMA AB 1 - Molded Case Circuit Breakers.
4. NEMA ICS 2 - Industrial Control Devices, Controllers, and Assemblies.
5. ANSI C37 - Standards for Circuit Breakers, Switchgear, Relays, Substations and Fuses.
6. ANSI C57 - Distribution, Power, and Regulating Transformers.

B. The fully assembled VFD system shall carry the UL label certifying UL-508 standards. An equivalent safety labeling program by ETL or CSA documenting compliance with these industry standards shall be acceptable.

1.4 VENDOR QUALIFICATIONS:

A. All vendors supplying equipment and/or services under this specification, shall pre-qualify and be listed in section 1.5.

B. The electrical contractor shall coordinate and assume system responsibility and compatibility between the various approved supplier's equipment and services required to meet these specifications.
C. The electrical contractor shall be responsible for the coordination with qualified vendors of equipment and services outside the scope of this specification (but required for the proper operation of the system) as listed in section 4.1.

D. Suppliers of VFD systems shall have a minimum of five (5) years of experience supplying and maintaining VFDs. Suppliers must have a local service center with a factory spare parts inventory and factory-authorized service technicians available twenty-four hours a day.

1.5 ACCEPTABLE SUPPLIERS:

A. The following VFD manufacturer’s equipment have been pre-approved to meet the products section of this specification:

1. Mitsubishi through Energy Management Corporation
2. Yaskawa through Energy Management Corporation
3. ABB through Midgley-Huber Inc.

B. Vendors wishing to quote other VFD manufacturers and/or service companies must have prior written approval from the engineer. If not listed above, the vendor must apply to the engineer for approval 10 days prior to bid date showing a point by point compliance with the intention of this specification including actual test and documentation reports from previous projects for all services required on this project.

1.6 MATERIAL BOND:

A. A material supply bond is required covering the VFD system equipment and services provided by the vendor on this project. The bond shall assure that all requirements and provisions of this VFD specification are complied with.

1.7 SUBMITTALS:

A. The following information shall be included with the bid package:

1. VFD system and services bid bond.
2. Description of equipment and tests included in bid to meet power quality requirements of section 3.1.
3. Qualifications and name of engineering and technical persons responsible for support and warranty on this project.
4. Extended warranty/service contract bid per section above.

B. The following shall be included in the submittal package in the quantities required under the general provisions of this project:

1. Completed Data Sheet.
2. Set of outline drawings giving complete mounting and conduit entry and exit dimensions.
3. Set of complete electrical drawings for power and control wiring.
4. Manufactures literature giving detailed information of equipment being supplied including part numbers, model numbers and ratings.

C. The following compliance and approval forms shall be submitted for approval:

1. Sample installation approval form to comply with section 4.1.
2. Sample VFD system commissioning approval form to comply with 4.2A.
3. Sample VFD system training approval form to comply with 4.2B.
4. Sample VFD quality assurance program and sample factory test and certification report forms as required to meet section 2.5.

D. The following shall be included in the Operations and Maintenance Manual(s):

1. All information required under paragraph 1.7B.
2. Test certificates.
3. Warranty information.
4. A listing of service personnel responsible for warranty repairs.

PART 2 – PRODUCTS

2.1 GENERAL:

A. This portion of the specification outlines the overall fabrication, performance and functional requirements of VFDs supplied for positive speed control of standard NEMA design B induction motors.

B. It is the intent of this section to specify non-proprietary designs and hardware that assure modern “state of the art” equipment which provides a high level of performance and reliability for the greatest long term, total value to the owner.

C. Provide VFD systems compatible in every respect with motor it controls. Coordinate work with Divisions 21, 22, and 23.

2.2 SYSTEM DESCRIPTION:

A. The VFD system shall be supplied as a complete, pre-integrated, stand-alone package produced by a single manufacturer regularly engaged in the production of same and who maintains full system support responsibility.

1. The VFD system manufacturer shall integrate all components and equipment required to meet these specification features and functions as a single UL (or equivalent) labeled system. Vendors providing equipment requiring panel shop or job site modifications or additions that would not be valid under the original equipment manufacturer's (OEM's) safety labeling will not be acceptable.

2. Pre-integrated equipment shall include but not be limited to rectifier units, inverter units, control circuitry, operator interfaces, protective equipment, and other accessories and auxiliary items necessary to meet the highest standards for the type of service specified herein.

2.3 CONSTRUCTION:

A. SPACE and ENVIRONMENT:

1. All VFD system components shall be housed in a grounded, dead front, free-standing, or wall mounted NEMA 1 enclosure. The variable frequency drive inverter unit shall be mounted on a removable panel to facilitate maintenance. The VFD system size shall not exceed the size allotments specified on the drawings nor shall any portion of the system
exceed a height of 90 inches. Entry shall be provided for incoming line and load cables as required or as shown on the drawings.

2. VFD systems mounted indoors shall be properly ventilated and sized to operate continuously at the job site elevation in an ambient environment of 0°C to 40°C, 0-90% RH. VFD systems mounted outdoors shall include environment control provisions as required (or as shown on the plans) to operate in an ambient of -30°C to 50°C, 0-100% RH.

3. Provide cooling fans in all variable frequency drive enclosures.

2.4 SUPPLY POWER:

A. All components of the VFD system shall be selected to operate continuously without any system trip or damage based on the nominal power specifications and requirements shown on the drawings or schedules. The above conditions must be maintained under the following expected variations:

1. Plus or minus 10% voltage fluctuation.
2. Plus or minus 3% frequency variation (5% if served by a back-up generator).
3. Distorted voltage waveform with up to 7% total voltage harmonic distortion.

B. The VFD system shall employ voltage sag ride-through coordination under normal operating (average load) conditions to prevent nuisance trips with the following utility interruptions (based on preliminary IEEE working group P1346 data):

1. 0% voltage for 1 cycle.
2. 60% voltage for 10 cycles.
3. 87% voltage continuous.

C. DEVICES and WIRING:

1. The VFD system shall employ door mounted industrial control operator devices, programming unit, and other devices per the layout shown on the drawings and as required to meet all functional and feature requirements of this specification. Operator pilot lights, switches and pushbuttons (if required) shall be industrial oil tight industry standard devices.

2. Control voltages shall be 120 volts or less supplied by machine tool type transformers employing both primary and secondary fusing. VFD control transformer VA sizes shall be increased by 10% or as necessary to accommodate external impedances when plans show connections to external safety interlocks or other control devices.

3. The VFD system factory wiring shall be permanently marked with hot emboss stamping or an equivalent marking system. All devices shall be labeled and identified with correct setting selections. All component identification and wiring shall be documented in the operation and maintenance manual.

D. LOAD:

1. The VFD system shall be capable of starting and continuously driving the specified maximum motor load as identified on the drawings and schedules.

2. VFDs driving variable torque loads shall be programmed to optimize load patterns which maximize system efficiency and minimize motor heating and stresses. VFDs driving constant torque or other loads shall be programmed to optimize load patterns for system or process performance as required.

3. All VFD systems shall have an overload capacity of a minimum of 120% for one minute.
E. EFFICIENCY and POWER FACTOR:

1. The VFD solid state converter and inverter power switching components and control shall be selected to achieve a 95% efficiency or better at full load and speed. Other auxiliary devices required on the drawings or in these specifications including cooling or heating devices etc. shall be of a design to optimize efficiency as intended under this specification.

2. The entire true system power factor (as measured at the input to the VFD system) shall be 95% or better across the operational speed range. Power factor that becomes leading under light load conditions (due to PF correction) is acceptable only if voltage rise is prevented from back feeding to the rest of the system (meaning PF correction must act like a synchronous condenser). The voltage tolerance at the main VFD system input terminals (as specified in section 2.3 B1a.) shall not be compromised as a result of power factor correction techniques.

F. PROTECTION:

1. Short circuit protection shall be provided to the VFD system through an externally operated, door interlocked fused disconnect, circuit breaker or motor circuit protector (MCP) rated at 65,000 AIC minimum. The door interlocked handle must be capable of being locked off to meet NEC.

2. Overcurrent protection shall be provided in the VFD system through electronic motor overload (MOL) circuits with instantaneous trip, inverse time trip, and current limit functions. These shall be adjustable and optimized for the application. Multi-motor units shall have separate overload protection for every motor.

3. In addition to the overcurrent protection above, the VFD system shall provide over and under voltage protection, over temperature protection, ground fault protection, and control or microprocessor fault protection. These protective circuits shall cause an orderly shutdown of the VFD, provide indication of the fault condition, and require a manual reset (except under voltage) before restart. Under voltage from a power loss shall be set to automatically restart after return to normal. The history of the previous three faults shall remain in memory for future review.

4. External protective faults including safeties or motor over temperature may be interfaced to the VFD system and annunciated if shown on the drawings.

G. SYSTEM CONTROLS AND INTERFACE TERMINATIONS:

1. If shown on the drawings, the VFD system may require integrated transducers, controllers, sequencers, bypass methods, and communication interfaces among others. Such devices (shown on the drawings as part of the VFD system) shall be completely pre-integrated requiring the contractor to make only the typical field connections required as customer connections.

2. Items shown on the drawings or schedules as "future" shall be available from the VFD system manufacturer in kit form for future owner integration into the VFD system.

3. The VFD system customer terminations shall be clearly identified with terminal numbers and a permanent wiring diagram located in the VFD system enclosure.

4. The VFD shall be controlled with 0-10V dc (0 – 100% speed) and 4-20 ma (20 – 100% speed) signals. Coordinate all control work with Divisions 21, 22, and 23.

2.5 FEATURES:

A. The following operator control and indication features shall be provided standard (unless shown differently on the drawings) as part of each VFD system:
1. Hand-Off-Auto (local start at VFD, remote start with contact closure).
2. Local-Remote speed control (local speed control at VFD, remote speed control through speed reference signal).
3. Frequency (speed) indication.
5. Motor current indication.
6. VFD run indication.
7. VFD fault and diagnostic indication.
8. Bypass switch.

B. The following customer connections and interface terminations shall be provided standard (unless shown differently on the drawings) as part of each ASD system:

1. VFD remote start/stop connection.
2. External safeties connection.
3. VFD run annunciation.
4. VFD fault annunciation.
5. VFD speed reference input connection (4-20mA or as shown on drawings).

C. The following parameter adjustments shall be available to tune the VFD system:

1. Minimum and maximum speeds.
2. Acceleration and declaration times.
3. Overcurrent trip point.
5. Maximum base motor voltage.
6. Input speed reference signal gain and bias.
7. Output speed reference signal gain and bias.

D. The VFD shall be capable of starting into a rotating motor at any speed.

E. The VFD shall auto restart after a power failure.

F. For maintenance purposes, the VFD system shall be capable of starting, stopping, and running with stable operation with the motor completely disconnected (no load).

G. Provide bypass package consisting of the following equipment:

1. Extended enclosure.
2. Door interlocked motor circuit protector.
3. Electronic motor overload (Class 20 or 30).
4. 2 contactor bypass (output and bypass).
5. Fast acting drive input fuses.

H. Provide 5% line reactors if recommended by the manufacturer based on size and type of unit.

2.6 QUALITY ASSURANCE:

A. The VFD system manufacturer shall have a quality assurance program acceptable to the engineer. An outline of this program shall be submitted for approval as noted in 1.7.
B. Prior to shipping any equipment, the manufacturer shall individually test and certify each unit to document compliance. This certification report shall be submitted as part of the operation and maintenance manual and include the following minimum testing:

1. A visual inspection shall be made consisting of all system components, wiring connections, and safety mechanisms.
2. High pot testing shall be conducted on the completed VFD system including all accessory power components as a complete package. This test shall be conducted per UL 508 (two times the rated voltage plus 1000 volts AC for 60 seconds) using regularly calibrated high pot test equipment.
3. A system run test shall be conducted using an actual motor accelerated and decelerated through the entire speed range.
4. All control panel devices, including switches, pilot lamps, keypad and special control devices shall be functional tested.
5. Special tests shown on the drawings or schedules or as later required by the engineer to demonstrate compliance with any specification herein shall be conducted upon request (either witnessed or not) at no additional cost.

PART 3 – EXECUTION

3.1 INSTALLATION:

A. The electrical contractor shall be responsible for mounting the VFD.

B. The VFD system equipment shall be installed and tested under the direction of factory trained personnel as specified in 1.2B & 4.2. The installation shall be certified based on the approval form submitted as part of section 1.7.

C. Protect stored VFD systems during construction. Storage must be in areas free of dirt, dust, vibration, and moisture. VFDs shall not be exposed to excessive heat or cold.

3.2 SYSTEM COMMISSIONING AND CERTIFICATION:

A. The VFD system start-up shall be performed by a service technician or engineer certified by the manufacturer. The following adjustments and tests shall be performed as a minimum with certified copies included in the maintenance and operation manual:

1. Verify that the input voltage is within the manufacturer's specification tolerances.
2. Verify that the motor rotation is correct in all modes of operation.
3. Verify all operator devices, programming and monitoring functions to be fully operational.
4. Verify operation of all field signal control connections.
5. Measure and record system output voltage and current at 50% and 100% speed. Tune the output voltage to correspond to motor nameplate rating at full speed. Check full load current measurements against nameplate data.
6. Make all parameter adjustments to tune and optimize the VFD system to the application. Record all configuration values as part of this report.

B. Owner training shall be provided for each model and type of VFD system provided. Training shall consist of both classroom and actual equipment hands-on training. The training shall be certified on the approved form (submittal required in section above) and included in the operation and maintenance manuals.
3.3 DOCUMENTATION:

A. The VFD system vendor shall supply certified as-built drawings based on the required drawings and approved drawing formats included as part of the submittal process (see section above).

 1. The drawings shall be included as part of the operation and maintenance manual and be of a reproducible quality.

 2. Autocad format files of each drawing shall also be included on a floppy disk.

B. The operation and maintenance manuals shall consist of the following instructions and information:

 1. Unloading, handling, installation, and special consideration instructions.
 2. Operating functional descriptions and operating instructions.
 3. Bill of materials with all spare parts ordering information and availability.
 4. Factory test reports per 2.5.
 5. Start-up and system commissioning reports per 4.2A.
 6. Training certification per 4.2B.

3.4 WARRANTY:

A. The VFD system vendor shall supply a complete parts and labor warranty (including travel expenses) for 1 year from the date of substantial completion.

 1. The warranty shall cover the entire VFD system including power devices, controllers, etc. enclosed as part of the system package.

B. In place of the one year warranty, a two year warranty/service contract shall be quoted as an option at bid time. This service contract shall be renewable in two year increments thereafter. The service contract shall be executable by the owner at the fixed bid price anytime during the first 6 months of operation from date of substantial completion.

 1. The extended warranty/service contract shall include necessary repairs or loaner replacement assuring complete restoration of operation within 24 hours from the time a service call is requested. A $200.00 per day penalty shall be applied for failure to comply after the acknowledged service request.

 2. The extended warranty/service contract shall include job site visits twice yearly to inspect, clean, tune (optimize parameters) and repair (if necessary) each ASD system supplied under this contract.

 3. The extended warranty/service contract shall include basic orientation and operator training review with the owner's designated personal as part of this visit.

 4. The extended warranty/service contract shall include a 200% performance bond in the owner's favor for the term of the service contract.

3.5 SOURCE QUALITY CONTROL:

A. All materials and equipment provided shall be new and unused.

B. All components shall be UL listed and labeled.

C. ASD shipped directly from the manufacturer shall have a UL label.
D. ASD packages assembled form components by suppliers shall be UL labeled or ETL approved.

END OF SECTION 26 0156
SECTION 260170 – DISCONNECT SWITCHES

PART 1 – GENERAL

1.1 RELATED DOCUMENTS:

A. Drawings and general provisions of Contract, including General and Supplementary Conditions and Division-1 Specification Sections, apply to work of this section.

B. This section is a Division 26 General Provisions section, and is part of each Division 26, 27, and 28 sections making reference to disconnect switches.

1.2 DESCRIPTION OF WORK:

A. Extent of disconnect switch work is indicated by drawings and schedules and is specified herein.

B. Type of disconnects in this section include the following:

1. General Duty Disconnect Switches
2. Heavy Duty Disconnect Switches

1.3 QUALITY ASSURANCE:

A. STANDARDS: Refer to Section 260001 – Electrical General Provisions as applicable.

B. SUBMITTALS:

1. Product Data: Submit manufacturer's data on disconnect switches including specifications, installation instructions, etc.
2. Shop Drawings: Submit dimensioned drawings of disconnects showing accurately scaled layouts of disconnects and enclosures.
3. Equipment Room Layouts: Submit dimensioned drawings of all equipment rooms indicating spatial relationships to other proximate equipment. Insure that all code required clearances are maintained.

PART 2 – PRODUCTS

2.1 MANUFACTURERS:

A. Subject to compliance with all requirements, provide disconnect switches (fusible and non-fusible) and fusible switches (in power panels) from one of the following:

1. Cutler-Hammer
2. General Electric / ABB
3. Siemens
4. Square D

2.2 GENERAL:
A. Provide fusible and/or non-fusible disconnect switches and ancillary components of types, sizes, ratings, and electrical characteristics as indicated. Provide enclosures in NEMA ratings suitable for applications. Provide fuses as indicated; See Section 260180 – Overcurrent Protective Devices.

2.3 GENERAL DUTY DISCONNECT SWITCHES:

A. Provide 240 volt rated, general duty switches in sheet steel enclosures as indicated of types, sizes, ratings, and electrical characteristics indicated and as required to suit respective application. Provide general duty switches for circuits rated 240 volts or less. Construct of spring-assisted, quick-make, quick-break mechanisms. Provide solid neutral as required by application. Equip with operating handle capable of being locked in the OFF position. Provide Class R rejection fuse clips for fusible-type switches.

2.4 HEAVY DUTY DISCONNECT SWITCHES:

A. Provide 600 volt rated, heavy duty switches in sheet steel enclosures as indicated of types, sizes, ratings, and electrical characteristics indicated and as required to suit respective application. Provide heavy duty switches for circuits rated greater than 240 volts, but less than 600 volts. Construct of spring-assisted, quick-make, quick-break mechanisms. Provide solid neutral as required by application. Equip with operating handle capable of being locked in the OFF position. Provide Class R rejection fuse clips for fusible-type switches.

PART 3 – EXECUTION

3.1 GENERAL:

A. Install disconnects in accordance with manufacturer's written instructions, applicable requirements of NEC, NEMA standards, and NECA's "Standards of Installation", and in compliance with recognized industry practices to ensure that products fulfill requirements.

3.2 IDENTIFICATION:

A. Provide 1/16" thick black plastic laminate labels with 1/4" high lettering on the exterior of each disconnect indicating name of disconnect or load served. Bolt labels to enclosure. Mark on interior cover the source of power by indicating the panel and circuit number.

3.3 MOUNTING:

A. Mount disconnects as indicated, but in no case higher than 6'-6" from finished floor to top of disconnect. Anchor enclosures firmly to walls and structural surfaces.

END OF SECTION 260170
SECTION 260180 - OVERCURRENT PROTECTIVE DEVICES

PART 1 – GENERAL

1.1 RELATED DOCUMENTS:
A. Drawings and general provisions of Contract, including General and Supplementary Conditions and Division-1 Specification Sections, apply to work of this section.
B. This section is a Division 26 General Provisions section, and is part of each Division 26, 27, and 28 section making reference to overcurrent protective devices.

1.2 DESCRIPTION OF WORK:
A. Extent of overcurrent protective devices is indicated by drawings and schedules and is specified herein.
B. Type of overcurrent protective devices in this section include the following:
 1. Molded Case Circuit Breakers
 2. Fuses

1.3 QUALITY ASSURANCE:
A. STANDARDS: Refer to Section 260001 - Electrical General Provisions as applicable.
B. SUBMITTALS:
 1. SHOP DRAWINGS: Submit manufacturer’s data on overcurrent protective devices including specifications, time-current trip characteristics curves, mounting requirements, installation instructions, etc. Submit dimensioned drawings of overcurrent protective devices.

PART 2 – PRODUCTS

2.1 GENERAL:
A. Provide overcurrent protective devices and ancillary components of types, sizes, ratings, and electrical characteristics indicated. Provide enclosures in NEMA ratings as indicated and suitable for applications.

2.2 MOLDED CASE CIRCUIT BREAKERS:
A. MANUFACTURERS: Subject to compliance with all requirements, provide molded case circuit breakers from one of the following:
 1. Cutler-Hammer
 2. General Electric / ABB
 3. Siemens
4. Square D

B. MOLDED CASE CIRCUIT BREAKERS:

1. Provide factory-assembled, molded case circuit breakers as integral components of lighting and appliance panelboards, power panelboards, switchboards, and for individual mounting as indicated. Provide thermal magnetic, molded case circuit breakers of amperages, voltages, types, and short circuit current ratings indicated. Provide bolt-on type breakers only. Construct with quick-break, quick-break mechanism with inverse-time delay and instantaneous trip protection for each pole. Provide breakers rated for ambient temperatures to suit respective applications. Provide mechanical screw type removable copper connector lugs of size to accommodate conductors specified.

2. Provide breakers that have interrupting ratings greater than or equal to the specified fault current. Provide fully-rated systems only. Series-rated systems are not acceptable, unless specifically noted otherwise.

2.3 FUSES:

A. VENDORS: Subject to compliance with all requirements, provide fuses from one of the following:

1. Bussmann
2. Gould Shawmut
3. Reliance
4. Littlefuse

B. FUSES: Provide fuses as integral components of disconnects, fusible switches, and bolted pressure switches. Provide fuses in types and sizes as recommended by manufacturer's written instructions. Provide fuses for mains, feeders, and branch circuits as follows:

1. Circuits 601 to 6000 amperes: Shall be protected by current limiting Bussmann Low-Peak Time-Delay Fuses KRP-C or equivalent. Fuses shall be UL Class L with an interrupting rating of 200,000 amperes r.m.s. symmetrical.

2. Motor and Transformer Circuits 0 to 600 amperes: Shall be protected by current-limiting Bussmann Low-Peak Dual Element Fuses LPN-RK (250 volts) or LPS-RK (600 volts) or equivalent. Fuses shall be UL Class RK1 with an interrupting rating of 200,000 amperes r.m.s. symmetrical.

3. Feeders to Circuit Breaker Panels 0 to 600 amperes: Shall be protected by current-limiting Bussmann Low-Peak Time Delay fuses LPJ or equivalent. Fuses shall be UL Class RK1 with an interrupting rating of 200,000 amperes r.m.s. symmetrical.

PART 3 – EXECUTION

3.1 GENERAL:

A. Install overcurrent protective devices in accordance with manufacturer's written instructions, applicable requirements of NEC, NEMA standards, and NECA's "Standards of Installation", and in compliance with recognized industry practices to ensure that products fulfill requirements.

3.2 SIZING FUSES:
A. Size all fuses in accordance with manufacturer's written recommendations, whether fuse size is indicated on drawings or not. If nuisance tripping occurs, increase fuse size and disconnect if necessary as required to provide nuisance-free tripping. Adjust fuse size for proper ambient temperature, frequent starting and stopping of motor loads, and for loads with long start times.

3.3 IDENTIFICATION:

A. Provide 1/16" thick black plastic laminate labels with 1/4" high lettering on the exterior of each disconnect indicating name of disconnect or load served. Bolt labels to enclosure. Mark on interior cover the source of power by indicating the panel and circuit number.

3.4 MOUNTING:

A. Mount disconnects as indicated, but in no case higher than 6'-6" from finished floor to top of disconnect. Anchor enclosures firmly to walls and structural surfaces.

3.5 TESTING OF GROUND FAULT PROTECTION:

A. Have all ground fault protection systems tested by authorized factory representative for proper operation. Replace all malfunctioning units. A complete record of current trip level and time required to trip the disconnecting device shall be submitted to the owner.

3.6 SPARE PARTS:

A. Spare Fuses: For each type and ampere rating, furnish one spare fuse for every 5 provided, but not less than three total.

END OF SECTION 260180
PART 1 – GENERAL

1.1 RELATED DOCUMENTS:
A. Drawings and general provisions of Contract, including General and Supplementary Conditions and Division-1 Specification Sections, apply to work of this section.
B. This section is a Division 26 General Provisions section, and is part of each Division 26, 27, and 28 sections making reference to grounding.

1.2 DESCRIPTION OF WORK:
A. Extent of grounding work is indicated by drawings and schedules and is specified herein.
B. Ground the complete electrical installation including the system neutral, metallic conduits and raceways, boxes, fittings, devices, cabinets, equipment, and separately derived systems in accordance with the NEC and all other applicable codes to provide a permanent, continuous, low impedance, grounding system.
C. Provide grounding system such that the resistance from the service entrance ground bus, through the grounding electrode to earth is not greater than 5 ohms.

1.3 QUALITY ASSURANCE:
A. STANDARDS: Refer to Section 260001 – Electrical General Provisions as applicable.
B. TESTING: Submit results of ground resistance testing as specified in this section. Include name of testing agency with report. Include test results in operation and maintenance manuals.

PART 2 – PRODUCTS

2.1 GENERAL:
A. Provide grounding equipment and accessories of types, sizes, ratings, and electrical characteristics indicated or as otherwise required to provide a complete system.

2.2 GROUNDING CONDUCTORS:
A. Unless noted otherwise, provide grounding conductors with stranded and insulation types to match phase conductors. Provide conductors with green insulation if possible; otherwise, wrap with green tape. Size ground conductors as indicated on drawings. Do not size ground conductors smaller than that allowable by NEC.

2.3 INSULATED GROUNDING BUSHINGS:
A. Provide plated malleable iron body with 150 degree Centigrade molded plastic insulating throat, lay-in grounding lug with hardened stainless steel fasteners (OZ Gedney BLG or equivalent).
PART 3 – EXECUTION

3.1 GENERAL:

A. Install grounding systems in accordance with manufacturer's written instructions, applicable requirements of NEC, NEMA standards, and NECA's "Standards of Installation", and in compliance with recognized industry practices to ensure that products fulfill requirements.

3.2 CLEANING:

A. Thoroughly clean all metal contact surfaces prior to installation of clamp-on connectors.

3.3 EQUIPMENT BONDING AND GROUNDING:

A. Provide an NEC sized conductor, whether indicated or not on the drawings, in raceways as follows:
 1. Motor and equipment branch circuits.

3.4 ADDITIONAL GROUNDING INSTALLATION REQUIREMENTS:

A. Provide grounding bushings on all service conduit and conduits installed in concentric/eccentric knock-outs or reducing washer at panelboards, cabinets, and gutters.

B. Provide bonding wire in all flexible conduits.

3.5 TESTING:

A. Obtain and record ground resistance measurements both from service entrance ground bus to the ground electrode and from the ground electrode to earth. Install additional bonding and grounding electrodes as required to comply with resistance limits specified under this Section. Use independent testing agency for all testing.

END OF SECTION 260452