PLUMBING GENERAL NOTES

1. All plumbing will be furnished and installed as shown on drawings. All plumbing will be conforming to latest edition of the Uniform Plumbing Code. Plumbing will be installed in accordance with the Uniform Plumbing Code. All plumbing will be installed in a manner that will prevent water damage to existing building sheathing. All plumbing will be installed in a manner that will prevent water damage to existing building sheathing. All plumbing will be installed in a manner that will prevent water damage to existing building sheathing.

2. All plumbing shall be furnished and installed in a manner that will prevent water damage to existing building sheathing. All plumbing shall be furnished and installed in a manner that will prevent water damage to existing building sheathing. All plumbing shall be furnished and installed in a manner that will prevent water damage to existing building sheathing.

3. All plumbing shall be furnished and installed in a manner that will prevent water damage to existing building sheathing. All plumbing shall be furnished and installed in a manner that will prevent water damage to existing building sheathing. All plumbing shall be furnished and installed in a manner that will prevent water damage to existing building sheathing.

4. All plumbing shall be furnished and installed in a manner that will prevent water damage to existing building sheathing. All plumbing shall be furnished and installed in a manner that will prevent water damage to existing building sheathing. All plumbing shall be furnished and installed in a manner that will prevent water damage to existing building sheathing.

5. All plumbing shall be furnished and installed in a manner that will prevent water damage to existing building sheathing. All plumbing shall be furnished and installed in a manner that will prevent water damage to existing building sheathing. All plumbing shall be furnished and installed in a manner that will prevent water damage to existing building sheathing.

6. All plumbing shall be furnished and installed in a manner that will prevent water damage to existing building sheathing. All plumbing shall be furnished and installed in a manner that will prevent water damage to existing building sheathing. All plumbing shall be furnished and installed in a manner that will prevent water damage to existing building sheathing.

7. All plumbing shall be furnished and installed in a manner that will prevent water damage to existing building sheathing. All plumbing shall be furnished and installed in a manner that will prevent water damage to existing building sheathing. All plumbing shall be furnished and installed in a manner that will prevent water damage to existing building sheathing.

8. All plumbing shall be furnished and installed in a manner that will prevent water damage to existing building sheathing. All plumbing shall be furnished and installed in a manner that will prevent water damage to existing building sheathing. All plumbing shall be furnished and installed in a manner that will prevent water damage to existing building sheathing.

9. All plumbing shall be furnished and installed in a manner that will prevent water damage to existing building sheathing. All plumbing shall be furnished and installed in a manner that will prevent water damage to existing building sheathing. All plumbing shall be furnished and installed in a manner that will prevent water damage to existing building sheathing.

10. All plumbing shall be furnished and installed in a manner that will prevent water damage to existing building sheathing. All plumbing shall be furnished and installed in a manner that will prevent water damage to existing building sheathing. All plumbing shall be furnished and installed in a manner that will prevent water damage to existing building sheathing.

11. All plumbing shall be furnished and installed in a manner that will prevent water damage to existing building sheathing. All plumbing shall be furnished and installed in a manner that will prevent water damage to existing building sheathing. All plumbing shall be furnished and installed in a manner that will prevent water damage to existing building sheathing.

12. All plumbing shall be furnished and installed in a manner that will prevent water damage to existing building sheathing. All plumbing shall be furnished and installed in a manner that will prevent water damage to existing building sheathing. All plumbing shall be furnished and installed in a manner that will prevent water damage to existing building sheathing.

13. All plumbing shall be furnished and installed in a manner that will prevent water damage to existing building sheathing. All plumbing shall be furnished and installed in a manner that will prevent water damage to existing building sheathing. All plumbing shall be furnished and installed in a manner that will prevent water damage to existing building sheathing.

14. All plumbing shall be furnished and installed in a manner that will prevent water damage to existing building sheathing. All plumbing shall be furnished and installed in a manner that will prevent water damage to existing building sheathing. All plumbing shall be furnished and installed in a manner that will prevent water damage to existing building sheathing.
KEYED NOTES

1. REMOVE EXISTING STEAM UNIT HEATER AND ALL ASSOCIATED PIPING.
2. REMOVE ALL EXISTING STEAM PIPING.
3. EXISTING CONDENSING UNIT PIPING AND ALL ASSOCIATED PIPING TO BE REMOVED.
4. EXISTING CONDENSING UNIT AND ALL ASSOCIATED PIPING TO BE REMOVED.
5. REMOVE ALL EXISTING CONDENSATE RETURN PIPING.
6. EXISTING CONDENSATE PUMP AND ASSOCIATED PIPING AND ELECTRICAL TO BE REMOVED.

LOWER LEVEL MECHANICAL DEMOLITION PLAN
KEYED NOTES

1. REMOVE EXISTING CABINET UNIT HEATER AND ALL ASSOCIATED PIPING.

2. REMOVE EXISTING RADIANT HEAT AND ALL ASSOCIATED PIPING.

3. REMOVE EXISTING STEAM UNIT HEATER AND ALL ASSOCIATED PIPING.

4. REMOVE EXISTING MAKE-UP AIR UNIT AND STEAM PIPING. REMOVE EXISTING METAL ROOF CURB CAP. MODIFY EXISTING SUPPLY DUCT AS REQUIRED TO CONNECT TO NEW 100% OUTSIDE AIR MAKE-UP AIR UNIT. INSTALL NEW CURB CAP AND SEAL WATER TIGHT.

5. REMOVE EXISTING MAKE-UP AIR UNIT AND STEAM PIPING. REMOVE EXISTING METAL ROOF CURB CAP. MODIFY EXISTING SUPPLY DUCT AS REQUIRED TO CONNECT TO NEW 100% OUTSIDE AIR MAKE-UP AIR UNIT. INSTALL NEW CURB CAP AND SEAL WATER TIGHT.

6. REMOVE EXISTING CHASE WALL AS REQUIRED FOR INSTALLATION OF NEW BOILER FLUES.

Ogden School District
1560 Monroe Blvd.
Ogden, UT 84401

BID SET
Ogden High School Boiler
And ROTC Building HVAC Replacement
2620 Harrison BLVD
Ogden, UT 84401

UPPER LEVEL
MECHANICAL
DEMOLITION PLAN

MD102
1. RUN ALL LINES BELOW CEILING, FOLLOW STEAM AND CONDENSATE LINES.
2. 2" HWS/HWR PIPING TO FOLLOW ROUTING OF EXISTING STEAM CONDENSATE LINE. STACK LINES ON WALL.
3. 2" HWS AND HWR. SEE BOILER ROOM PLAN FOR CONTINUATION.
4. 1 1/4" CONDENSATE DRAIN FROM LEVEL ABOVE. SEE SHEET M102 FOR CONTINUATION.
5. WALL MOUNTED INDOOR UNIT. INSTALL HIGH ON WALL BELOW CEILING.
6. OUTDOOR CONDENSING UNIT. INSTALL ON 4" CONCRETE PAD AND PROVIDE MANUFACTURER'S CLEARANCE ALL AROUND.
7. PROVIDE ALUMINUM COVER ON EXPOSED REFRIGERANT PIPING. SEE PIPING INSULATION SPECIFICATION.
8. CONDENSATE DRAIN LINE TO RUN AS HIGH AS POSSIBLE, COORDINATE WITH EXISTING CONDITIONS. PRIOR TO INSTALLATION REVIEW ROUTING WITH ENGINEER AND OWNER.
KEYED NOTES

1. HWS/HWR PIPING TO FOLLOW ROUTING OF EXISTING STEAM CONDENSATE LINE. RUN ABOVE CEILING.

2. PIPES DROP TO LEVEL BELOW. SEE SHEET M101 FOR CONTINUATION.

3. 1 1/2" HWS/HWR PIPES RISE TO SERVE MAKE-UP AIR UNIT ON ROOF.

4. 1 1/4" HWS/HWR PIPES RISE TO SERVE MAKE-UP AIR UNIT ON ROOF.

5. NEW MAKE-UP AIR UNIT ON ROOF. INSTALL NEW PREFABRICATED ROOF CURB. FLASH AND SEAL WATER TIGHT. PATCH AND REPAIR EXISTING ROOF AS REQUIRED.

6. 14" ROUND BOILER FLUES, EXTEND 18" ABOVE ROOF AND TERMINATE WITH WEATHER CAP PER BOILER MANUFACTURER'S RECOMMENDATIONS.

7. PATCH AND REPAIR HOLE TO MATCH EXISTING VENTILATION ROCKET VEIN OF ROOF.

8. 1 1/2" CONDENSATE DRAIN DOWN. SEE SHEET M101 FOR CONTINUATION.

9. 1 1/4" CONDENSATE DRAIN DOWN. SEE SHEET M401 FOR CONTINUATION.

10. INSTALL OUTDOOR CONDENSING UNITS ON COMPACTED SOIL WITH 2" GRAVEL BASE UNDER 4" CONCRETE PAD.

11. INSTALL ALUMINUM PIPING INSULATION COVER OVER EXPOSED REFRIGERANT PIPING. SEE PIPING INSULATION SPECIFICATION.
1. STUB COMBUSTION AIR DUCTS INTO EXISTING 48/48 PLENUM AND SEAL ALL AROUND AIR TIGHT.

2. CORE CUT (3) OPENINGS IN EXISTING FLOOR ABOVE. CORE CUTS ARE TO BE BETWEEN EXISTING CONCRETE FLOOR BEAMS. RISE (3) 14”ø BOILER FLUES UP THROUGH FLOOR AND EXTEND THROUGH ROOF ABOVE. TERMINATE WITH WEATHER CAP 18” ABOVE ROOF.

3. REMOVE AND REINSTALL EXISTING STAIR LANDING RAILING TO FACILITATE INSTALLATION OF NEW BOILERS.

4. EXISTING COMBUSTION AIR CONTROL PANEL TO BE REMOVED.

5. EXISTING BOILER CONTROL PANEL TO BE REMOVED.

6. NEW BOILER CONTROL PANEL.

7. REMOVE EXISTING AIR SEPARATOR AND REINSTALL IN NEW PIPING.

8. 2” HWS AND HWR TO ROTC BUILDING.

9. BALANCING VALVE. SET TO 465 GPM.

10. NEW 6” CONCRETE HOUSEKEEPING PAD. DO NOT COVER EXISTING FLOOR DRAINS.

11. 1 1/4” CONDENSATE DRAIN. SEE SHEET M101 FOR CONTINUATION.

12. 1 1/4” CONDENSATE DRAIN UP. SEE SHEET M102 FOR CONTINUATION.

13. CONDENSATE NEUTRALIZER.
Boiler Schedule

<table>
<thead>
<tr>
<th>No.</th>
<th>Location</th>
<th>Unit Number</th>
<th>Type</th>
<th>Capacity (Kg/h)</th>
<th>Temperature (°C)</th>
<th>Pressure (BAR)</th>
<th>Modulating Valve</th>
<th>Control</th>
<th>Interface</th>
<th>System</th>
<th>Hours</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Boiler 1</td>
<td>100</td>
<td>Condensing</td>
<td>500</td>
<td>80</td>
<td>1.2</td>
<td>Yes</td>
<td>YES</td>
<td>YES</td>
<td>Condensing</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>Boiler 2</td>
<td>200</td>
<td>Condensing</td>
<td>500</td>
<td>80</td>
<td>1.2</td>
<td>Yes</td>
<td>YES</td>
<td>YES</td>
<td>Condensing</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

Pump Schedule

<table>
<thead>
<tr>
<th>No.</th>
<th>Location</th>
<th>Unit Number</th>
<th>Type</th>
<th>Capacity (GPM)</th>
<th>Temperature (°F)</th>
<th>Pressure (PSI)</th>
<th>Modulating Valve</th>
<th>Control</th>
<th>Interface</th>
<th>System</th>
<th>Hours</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Pump 1</td>
<td>100</td>
<td>Centrifugal</td>
<td>500</td>
<td>80</td>
<td>1.2</td>
<td>Yes</td>
<td>YES</td>
<td>YES</td>
<td>Condensing</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>Pump 2</td>
<td>200</td>
<td>Centrifugal</td>
<td>500</td>
<td>80</td>
<td>1.2</td>
<td>Yes</td>
<td>YES</td>
<td>YES</td>
<td>Condensing</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

VRF Indoor Unit Schedule

<table>
<thead>
<tr>
<th>No.</th>
<th>Location</th>
<th>Unit Number</th>
<th>Type</th>
<th>Capacity (BTU/h)</th>
<th>Temp. (°F)</th>
<th>Fluid</th>
<th>Motor</th>
<th>Control</th>
<th>Interface</th>
<th>System</th>
<th>Hours</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Unit 1</td>
<td>100</td>
<td>Condensing</td>
<td>500</td>
<td>80</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>Condensing</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>Unit 2</td>
<td>200</td>
<td>Condensing</td>
<td>500</td>
<td>80</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>Condensing</td>
<td>24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VRF Outdoor Unit Schedule

<table>
<thead>
<tr>
<th>No.</th>
<th>Location</th>
<th>Unit Number</th>
<th>Type</th>
<th>Capacity (BTU/h)</th>
<th>Temp. (°F)</th>
<th>Fluid</th>
<th>Motor</th>
<th>Control</th>
<th>Interface</th>
<th>System</th>
<th>Hours</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Unit 1</td>
<td>100</td>
<td>Condensing</td>
<td>500</td>
<td>80</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>Condensing</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>Unit 2</td>
<td>200</td>
<td>Condensing</td>
<td>500</td>
<td>80</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>Condensing</td>
<td>24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Make-Up Air Handler Unit Schedule

<table>
<thead>
<tr>
<th>No.</th>
<th>Location</th>
<th>Unit Number</th>
<th>Type</th>
<th>Capacity (CFM)</th>
<th>Temp. (°F)</th>
<th>Fluid</th>
<th>Motor</th>
<th>Control</th>
<th>Interface</th>
<th>System</th>
<th>Hours</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Unit 1</td>
<td>100</td>
<td>Condensing</td>
<td>500</td>
<td>80</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>Condensing</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>Unit 2</td>
<td>200</td>
<td>Condensing</td>
<td>500</td>
<td>80</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>Condensing</td>
<td>24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hot Water Unit Heater Schedule

<table>
<thead>
<tr>
<th>No.</th>
<th>Location</th>
<th>Unit Number</th>
<th>Type</th>
<th>Capacity (BTU/h)</th>
<th>Temp. (°F)</th>
<th>Fluid</th>
<th>Motor</th>
<th>Control</th>
<th>Interface</th>
<th>System</th>
<th>Hours</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Unit 1</td>
<td>100</td>
<td>Condensing</td>
<td>500</td>
<td>80</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>Condensing</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>Unit 2</td>
<td>200</td>
<td>Condensing</td>
<td>500</td>
<td>80</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>Condensing</td>
<td>24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ELECTRICAL SPECIFICATIONS

1. DESCRIPTION
 1.1. This project is located in the [City, State] area and consists of a building or complex comprising [Number of Stories] stories with a total of [Total Floor Area] square feet. The electrical system is designed to meet the electrical requirements of the various spaces and systems within the building.

2. CODES AND STANDARDS
 2.1. The electrical design is in compliance with the 2021 National Electrical Code (NEC), International Building Code (IBC), International Plumbing Code (IPC), and other applicable local codes. The electrical system is designed to meet the energy efficiency and sustainability standards set by [Energy Star, LEED, etc.].

3. MATERIALS AND EQUIPMENT
 3.1. All electrical materials and equipment shall be of [manufacturer] manufacture, unless otherwise specified. The materials shall be selected based on durability, reliability, and energy efficiency.

4. SYSTEMS
 4.1. The electrical system shall include the following systems: [list of systems].

5. CONSTRUCTION
 5.1. The electrical contractor shall provide all necessary labor, materials, and equipment for the installation of the electrical system. The electrical work shall be performed in accordance with the NEC and other applicable codes.

6. TESTING AND ACCEPTANCE
 6.1. The electrical system shall be tested and accepted in accordance with the requirements of the local electrical authority and the owner's specifications.

7. MAINTENANCE
 7.1. The electrical system shall be maintained in accordance with the manufacturer's recommendations and the owner's specifications.

8. ACCESSORIES
 8.1. All electrical accessories such as switches, outlets, and fixtures shall be selected based on their compatibility with the electrical system and their ability to meet the aesthetic requirements of the building.

9. MAINTENANCE
 9.1. The electrical contractor shall provide a maintenance plan for the electrical system, including scheduled maintenance and emergency response.

10. INSPECTIONS
 10.1. The electrical contractor shall provide all necessary inspections to ensure compliance with the NEC and other applicable codes.

11. CONCLUSION
 11.1. This specification provides a comprehensive guide to the electrical design and installation for the project. The electrical system is designed to meet the needs of the building and to provide a safe and reliable electrical infrastructure for the occupants.

[End of Document]